原文:【数论数学】扩展欧拉定理

本文感谢 burnside神仙和 ddosvoid神仙的帮助审稿qwq Definition forall a , m in Z , s.t. gcd a,m ,则一定满足 a phi m equiv Mod m 。该定理被称作欧拉定理。 Demonstration 记 x i 为第 i 个与 m 互质的数,则共有 phi m 个 x i 。 设 p i a times x i 引理一: p i ...

2018-11-21 19:07 1 2454 推荐指数:

查看详情

数论定理

本文介绍[初等]数论、群的基本概念,并引入几条重要定理,最后籍着这些知识简单明了地论证了函数和定理数论是纯粹数学的分支之一,主要研究整数的性质。 算术基本定理(用反证法易得):又称唯一分解定理,表述为 任何大于1的自然数,都可以唯一分解成有限个质数的乘积,公式:\(n=p_1 ...

Mon Oct 21 18:55:00 CST 2019 0 364
学习:数学----定理扩展定理

定理扩展定理可以解决形如5100000000000000000000等大数幂取模或者求ax mod n=1的大于1的最小x值等一类问题,其中欧函数占巨大的重要性,有效的将复杂的大数幂取模问题转化为简单的大数取模和快速幂问题,下面就来介绍一下基本的定理扩展定理 ...

Tue Apr 30 21:22:00 CST 2019 0 554
扩展定理

扩展定理 \[a^b\equiv \begin{cases} &a^{b\%\varphi(p)} &\gcd(a,p)=1\\ &a^b &\gcd(a,p)\neq1,b<\phi(p)\\ &a^{b\%\varphi(p ...

Tue Mar 06 03:59:00 CST 2018 0 1184
函数|(扩展)定理|反演

也许更好的阅读体验 函数 定义 函数是 小于等于 x的数中与x 互质 的数的 数目 符号\(\varphi(x)\) 互质 两个互质的数的最大公因数等于1,1与任何数互质 通式 \(\varphi(x)=x\prod_{i=1}^n(1-\frac{1}{p_i ...

Sat Jun 29 23:52:00 CST 2019 7 1446
定理的证明与扩展

费马小定理定理: 费马小定理:当 $ m $ 为质数且 $ a $ 不为 $ m $ 的倍数时有 $ a^{m-1}≡1\mod(m) $ 根据费马小定理可知: $ a^{m-2} $ 就是a在模m意义下的逆元. 定理:当 $ a $ , $ m $ 互质时, $ a^{\phi ...

Sat Mar 09 19:51:00 CST 2019 0 527
浅谈扩展定理

浅谈扩展定理 前置知识: \(1,\)数论定理这里 \(2,\)积性函数\(\phi\)的性质 \(3,\)以下引理 证明引理用到的引理 (一),引理 ​ 设\(x\)=\(lcm(a,b)\)。 ​ 可以分解如下 \[a=p_1^{a_1}*……*p_k^{a_k ...

Wed Nov 07 04:08:00 CST 2018 0 916
数论(9):费马小定理定理

概述: 费马小定理定理数论中非常重要的两个定理,对解决整除问题和同余问题有着强大的功能。 费马小定理定理 费马小定理:当 \(m\) 为质数且 \(a\) 不为 \(m\) 的倍数(即:\(gcd(a,m) = 1\)时有 $a^{m−1}≡1\ mod\ (m) $ 另一 ...

Sat Nov 07 04:28:00 CST 2020 0 471
定理扩展定理降幂原理)证明

(所有^为次方) 定理: a^phi(m)=1 (mod m) ( gcd(a,m)=1 ) 设1到m中与m互质的数为 x1, x2, x3, ……x phi(m) 令pi=xi*a 引理一:p之间两两模m不同余,x之间两两模m不同于 x两两模m不同样因为都小于等于m ...

Tue Jan 15 05:07:00 CST 2019 0 570
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM