计算机通过主元来计算行列式,但还有另外两种方法,一种是大公式,由 \(n!\) 项置换矩阵组成;另一种是代数余子式公式。 主元的乘积为 \(2 * \frac{3}{2}* \frac{4}{3}* \frac{5}{4} = 5\)。 大公式有 \(4!=24\) 项 ...
行列式 如果有两个向量 lt a , a gt 和 lt b , b gt ,那么这两个向量组成的行列式是: 看起来只是表示一个简单的计算,仅仅计算了一个数值,但是别忘了,行列式是由向量组成的,它一定会表示向量间的某种关系。 在 线性代数笔记 向量 叉积 中我们看到,二阶行列式表示了二维平面中以两个向量为临边的平行四边形的面积 三阶行列式表示在三维空间中以三个向量为临边的平行六面体的体积 推广到n ...
2018-11-21 16:39 2 2558 推荐指数:
计算机通过主元来计算行列式,但还有另外两种方法,一种是大公式,由 \(n!\) 项置换矩阵组成;另一种是代数余子式公式。 主元的乘积为 \(2 * \frac{3}{2}* \frac{4}{3}* \frac{5}{4} = 5\)。 大公式有 \(4!=24\) 项 ...
设有n×n矩阵A: 则Aij的余子式Bij为:划去Aij所在的第i行与第j列的元,剩下的元不改变原来的顺序所构成的n-1阶矩阵的行列式称为元Aij的余子式: Aij余子式矩阵:将矩阵A中所有元替换为其余子式后所组成的矩阵: 代数余子式:Cij ...
数值,但是别忘了,行列式是由向量组成的,它一定会表示向量间的某种关系。 在《线性代数笔记4——向量3( ...
行列式公式 \(2*2\) 矩阵行列式公式推导 利用行列式性质3,每一行的线性性质,将向量分解 \[\begin {align} |A|=&\left| \begin{array}{cc} a & b \\ c & d \\ \end{array} \right ...
行列式(记为\(|A|\)) 定义 一个矩阵的行列式我们定义为\(\sum_{p\ is \ permutaion}(-1)^{\sigma(p)} \times\prod_{i=1}^na_{i,p_i}\) 其中\(\sigma(p)\)表示\(p\)的逆序对个数 性质 百度百科 ...
matlab行列式的余子式、代数余子式 四阶行列式: 元素 的余子式: 元素的代数余子式: ...
打破认知观的一节,之前学习行列式都是从逆序数开始学起,学习行列式的性质,做大量计算练习,这里直接告诉我们行列式的值代表面积/体积,建立了与矩阵、线性变换的联系,真的是一语惊醒梦中人! 5.0 总结 (1)行列式的意义 单位面积/单位体积缩放或者拉升的比例 线性变换对空间压缩或者拉升 ...
主对角线(从左上角到右下角这条对角线)下方的元素全为零的行列式称为上三角行列式。一个n阶行列式若能通过变换,化为上三角行列式,则计算该行列式就很容易了。 通过初等变换,把普通的行列式转换为上三角行列式。 就可以通过外面的系数,乘以主对角线(从左上角到右下角这条对角线)上的元素,得到 ...