深度卷积网络 涉及问题: 1.每个图如何卷积: (1)一个图如何变成几个? (2)卷积核如何选择? 2.节点之间如何连接? 3.S2-C3如何进行分配? 4.16-120全连接如何连接? 5.最后output输出什么形式? ①各个层解释: 我们先要 ...
什么是深度卷积网络 What are deep ConvNets learning 假如你训练了一个卷积神经网络,是一个 Alexnet,轻量级网络,你希望将看到不同层之间隐藏单元的计算结果。 从第一层的隐藏单元开始,假设你遍历了训练集,然后找到那些使得单元激活最大化的一些图片,或者是图片块。换句话说,将你的训练集经过神经网络,然后弄明白哪一张图片最大限度地激活特定的单元。注意在第一层的隐藏单元, ...
2018-11-10 15:18 0 1023 推荐指数:
深度卷积网络 涉及问题: 1.每个图如何卷积: (1)一个图如何变成几个? (2)卷积核如何选择? 2.节点之间如何连接? 3.S2-C3如何进行分配? 4.16-120全连接如何连接? 5.最后output输出什么形式? ①各个层解释: 我们先要 ...
卷积神经网络(CNN)因为在图像识别任务中大放异彩,而广为人知,近几年卷积神经网络在文本处理中也有了比较好的应用。我用TextCnn来做文本分类的任务,相比TextRnn,训练速度要快非常多,准确性也比较高。TextRnn训练慢得像蜗牛(可能是我太没有耐心),以至于我直接中断了训练,到现在我已经 ...
卷积神经网络 卷积神经网络(Convolutional Neural Network,CNN)又叫卷积网络(Convolutional Network),是一种专门用来处理具有类似网格结构的数据的神经网络。卷积神经网络一词中的卷积是一种特殊的线性运算。卷积网络是指那些至少在网络的一层中使用卷积 ...
卷积神经网络 深度神经网络的重要性在于,它开启了通向复杂非线性模型和对知识进行分层处理的系统方法的大门。人们开发了很多提取图像特征的技术:SIFT、HoG、Textons、图像旋转、RIFT、GLOH等。卷积神经网络的特点和优势在于自动提取特征。 卷积层生成特征映射图(feature ...
深度学习的许多应用中需要将提取的特征还原到原图像大小,如图像的语义分割、生成模型中的图像生成任务等。通过卷积和池化等技术可以将图像进行降维,因此,一些研究人员也想办法恢复原分辨率大小的图像,特别是在语义分割领域应用很成熟。 常见的上采样方法有双线性插值、转置卷积、上采样(unsampling ...
本文的主要目的,是简单介绍时下流行的深度学习算法的基础知识,本人也看过许多其他教程,感觉其中大部分讲的还是太过深奥,于是便有了写一篇科普文的想法。博主也是现学现卖,文中如有不当之处,请各位指出,共同进步。 本文的目标读者是对机器学习和神经网络有一定了解的同学(包括:梯度下降、神经网络、反向传播 ...
来源:http://deeplearning.net/tutorial/lenet.html#lenet Convolutional Neural Networks (LeNet) note:这部 ...
基础概念: 卷积神经网络(CNN):属于人工神经网络的一种,它的权值共享的网络结构显著降低了模型的复杂度,减少了权值的数量。卷积神经网络不像传统的识别算法一样,需要对数据进行特征提取和数据重建,可以直接将图片作为网络的输入,自动提取特征,并且对图形的变形等具有高度不变形。在语音分析和图像识别 ...