朴素贝叶斯应用:垃圾邮件分类 1. 数据准备:收集数据与读取 2. 数据预处理:处理数据 3. 训练集与测试集:将先验数据按一定比例进行拆分。 4. 提取数据特征,将文本解析为词向量 。 5. 训练模型:建立模型,用训练数据训练模型。即根据训练样本集,计算词项出现的概率P(xi|y ...
理解贝叶斯公式其实就只要掌握: 条件概率的定义 乘法原理 P c i x cfrac P x c i P c i P x 这里 x 是一个向量,有几个特征,就有几个维度。朴素贝叶斯就假设这些特征独立同分布,即 P x c i P x c i P x c i cdots P x n c i 在实现朴素贝叶斯的时候,还要注意一写技巧: 数据平滑处理 在计算机中,多个小数相乘趋于 ,因此,常常对每一个概 ...
2018-10-29 15:37 0 1142 推荐指数:
朴素贝叶斯应用:垃圾邮件分类 1. 数据准备:收集数据与读取 2. 数据预处理:处理数据 3. 训练集与测试集:将先验数据按一定比例进行拆分。 4. 提取数据特征,将文本解析为词向量 。 5. 训练模型:建立模型,用训练数据训练模型。即根据训练样本集,计算词项出现的概率P(xi|y ...
一个简单的例子 朴素贝叶斯算法是一个典型的统计学习方法,主要理论基础就是一个贝叶斯公式,贝叶斯公式的基本定义如下: 这个公式虽然看上去简单,但它却能总结历史,预知未来。公式的右边是总结历史,公式的左边是预知未来,如果把Y看出类别,X看出特征,P(Yk|X)就是在已知特征X ...
贝叶斯定理是关于随机事件A和B的条件概率的一则定理(比如常见的:P(A|B)是在B发生的情况下A发生的可能性)。 朴素的含义是各特征相互独立,且同等重要。某些 分类算法均以贝叶斯定理为基础。由此产生了 朴素贝叶斯分类算法。 朴素贝叶斯分类算法的思想基础是:对于给出 ...
朴素贝叶斯(Naive Bayesian)是基于贝叶斯定理和特征条件独立假设的一种分类算法。朴素贝叶斯想必是很多人在刚学习机器学习时想去第一个学习的算法,因为它朴素呀、简单呀(我记得当时的想法就是这样)。它真的那么简单么?今天我们就来讨论一下这个“简单”的机器学习算法。 贝叶斯定理 ...
1.理解分类与监督学习、聚类与无监督学习。 简述分类与聚类的联系与区别。 (1)分类:给数据贴标签,通过分析已有的数据特征,对数据分成几类,已知分类结果。然后引入新数据对其归类。分类可以提高认知效率,较低认知成本。 (2)聚类:不知分类结果,通过数据一定的相似性,把那些相似的数据聚集在一起 ...
》、《线性代数》、《运筹学》、《信息论》等几门课程算是前置课程,当然要转化为工程应用的话,编程技能也是需要的, ...
1. 前言 《朴素贝叶斯算法(Naive Bayes)》,介绍了朴素贝叶斯原理。本文介绍的是朴素贝叶斯的基础实现,用来垃圾邮件分类。 2. 朴素贝叶斯基础实现 朴素贝叶斯 (naive Bayes) 法是基于贝叶斯定理与特征条件独立假设的分类的方法。对于给定的训练数据集,首先基于特征条件独立 ...
先上问题吧,我们统计了14天的气象数据(指标包括outlook,temperature,humidity,windy),并已知这些天气是否打球(play)。如果给出新一天的气象指标数据:sunny,c ...