原文:线性代数笔记16——图和网络

图 Graph 是离散数学中的一种常见数据结构,由节点和边组成,如果边有方向,就是有向图。下图是一个有 个节点 条边的有向图: 这个图 Graph 可以表示电网 网络或建筑物通道的数学模型。 关联矩阵 可以通过一个矩阵来解析有向图,这个矩阵称为关联矩阵 Incidence Matrix 。 个节点 条边的图用一个 的矩阵表示,用正负表示边的方向,矩阵的一行相当于图的一条边,矩阵的一列对应图的一个 ...

2018-10-18 14:05 0 770 推荐指数:

查看详情

线性代数笔记

线代笔记 ——https://space.bilibili.com/88461692#/ 1.线性相关 (1)你有多个向量,并且可以移除其中一个而不减少张成的空间,当这种情况发生时,相关术语称它们是“线性相关”的。另一种表述就是,这个向量可以表示为其它向量的线性组合,因为这个向量已经落在 ...

Thu Mar 29 04:15:00 CST 2018 0 916
线性代数笔记

说明 课堂教的云里雾里,非常懵,其实线性代数的思路很简单 把细节忘了都行,把思路消化 矩阵就是向量的映射 矩阵就是向量的映射 矩阵就是向量的映射 也可以看做对空间的线性变换 类似f(g(x)),多个矩阵相继变换A(B(x))简写作ABx,即\(x \rightarrow_{B ...

Sun Sep 26 07:06:00 CST 2021 0 103
线性代数笔记4——向量3(叉积)

什么是叉积   向量的叉积也叫外积、向量积、叉乘或矢量积。两个向量的叉积是这样表示的:   在二维空间内,向量A = <a1, a2>,B = <b1, b2> ...

Sat Jan 06 06:50:00 CST 2018 3 2492
线性代数笔记1——矩阵的基本运算

  简单来说,矩阵是充满数字的表格。   A和B是两个典型的矩阵,A有2行2列,是2×2矩阵;B有2行3列,是2×3矩阵;A中的元素可用小写字母加行列下标表示,如a1,2 = 2, a2,2 = ...

Sat Oct 14 05:22:00 CST 2017 0 13224
线性代数笔记18——投影矩阵和最小二乘

一维空间的投影矩阵   先来看一维空间内向量的投影:   向量p是b在a上的投影,也称为b在a上的分量,可以用b乘以a方向的单位向量来计算,现在,我们打算尝试用更“贴近”线性代数的方式表达。   因为p趴在a上,所以p实际上是a的一个子空间,可以将它看作a放缩x倍,因此向量p可以用p ...

Sat Nov 03 01:43:00 CST 2018 1 9648
线性代数笔记31——奇异值分解

  原文 | https://mp.weixin.qq.com/s/HrN8vno4obF_ey0ifCEvQw   奇异值分解(Singular value decomposition)简称SVD ...

Wed Dec 11 02:45:00 CST 2019 0 598
线性代数笔记23——矩阵的对角化和方幂

特征值矩阵   假设A有n个线性无关的特征向量x1,x2……xn,这些特征向量按列组成矩阵S,S称为特征向量矩阵。来看一下A乘以S会得到什么:   最终得到了S和一个以特征值为对角线的对角矩阵的乘积,这个对角矩阵就是特征值矩阵,用Λ表示:   没有人关心线性相关的特征向量,上式有意义 ...

Sat Dec 29 23:07:00 CST 2018 0 1638
线性代数笔记10——矩阵的LU分解

  在线性代数中, LU分解(LU Decomposition)是矩阵分解的一种,可以将一个矩阵分解为一个单位下三角矩阵和一个上三角矩阵的乘积(有时是它们和一个置换矩阵的乘积)。LU分解主要应用在数值分析中,用来解线性方程、求反矩阵或计算行列式。 什么是LU分解   如果有一个矩阵A,将A表示 ...

Thu Aug 30 02:21:00 CST 2018 0 9653
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM