这几天每天花了点时间看完了吴恩达的深度学习课程视频。目前还只有前三个课程,后面的卷积神经网络和序列模型尚未开课。课程的视频基本上都是十分钟出头的长度,非常适合碎片时间学习。 一直以为机器学习的重点在于设计精巧、神秘的算法来模拟人类解决问题。学了这门课程才明白如何根据实际问题优化、调整模型更为重要 ...
很好的博客:残差网络ResNet笔记 主要内容: 一.深层神经网络的优点和缺陷 二.残差网络的引入 三.残差网络的可行性 四.identity block 和 convolutional block 一.深层神经网络的优点和缺陷 .深度神经网络很大的一个优点就是能够表示一个复杂的功能。网络的层数越多,意味着能够提取到不同level的特征越丰富。并且,越深的网络提取的特征越抽象,越具有语义信息。但 ...
2018-10-07 22:12 0 1231 推荐指数:
这几天每天花了点时间看完了吴恩达的深度学习课程视频。目前还只有前三个课程,后面的卷积神经网络和序列模型尚未开课。课程的视频基本上都是十分钟出头的长度,非常适合碎片时间学习。 一直以为机器学习的重点在于设计精巧、神秘的算法来模拟人类解决问题。学了这门课程才明白如何根据实际问题优化、调整模型更为重要 ...
01. 神经网络和深度学习 第四周 深层神经网络 4.1 & 4.2 深层神经网络 logistic回归模型可以看作一层网络,通过增加隐藏层的层数,就可以得到深层网络了。 4.3 检查矩阵的维数 确保神经网络计算正确的有效方法之一就是检查矩阵的维数,包括数据矩阵、参数 ...
神经网络和深度学习 课程 1-1深度学习概述 2-1 神经网络的编程基础 2-2 逻辑回归代价函数与梯度下降 2-3 计算图与逻辑回归中的梯度下降 2-4 向量化 2-5 向量化逻辑回归 2-6 向量化 logistic 回归的梯度输出 2-7 Python ...
构建能够训练深度网络的 ResNets,ResNets 是由残差块(Residual block)构建 ...
作者:szx_spark 1. 经典网络 LeNet-5 AlexNet VGG Ng介绍了上述三个在计算机视觉中的经典网络。网络深度逐渐增加,训练的参数数量也骤增。AlexNet大约6000万参数,VGG大约上亿参数。 从中我们可以学习 ...
1. 导读 本节内容介绍普通RNN的弊端,从而引入各种变体RNN,主要讲述GRU与LSTM的工作原理。 事先声明,本人采用ng在课堂上所使用的符号系统,与某些学术文献上的命名有所不同,不过核心思想都 ...
作者:szx_spark 1. Padding 在卷积操作中,过滤器(又称核)的大小通常为奇数,如3x3,5x5。这样的好处有两点: 在特征图(二维卷积)中就会存在一个中心像素点。有一个 ...
RNN 首先思考这样一个问题:在处理序列学习问题时,为什么不使用标准的神经网络(建立多个隐藏层得到最终的输出)解决,而是提出了RNN这一新概念? 标准神经网络如下图所示: 标准神经网络在解决序列问题时,存在两个问题: 难以解决每个训练样例子输入输出长度不同的情况,因为序列的长度代表 ...