原文:【人脸检测——基于机器学习4】HOG特征

前言 HOG特征的全称是Histograms of Oriented Gradients,基于HOG特征的人脸识别算法主要包括HOG特征提取和目标检测,该算法的流程图如下图所示。本文主要讲HOG特征提取。 HOG特征的组成 Cell:将一幅图片划分为若干个cell 如上图绿色框所示 ,每个cell为 像素 Block:选取 个cell组成一个block 如上图红色框所示 ,每个block为 像素。 ...

2018-10-04 21:34 0 1429 推荐指数:

查看详情

关于机器学习特征缩放

Andrew在他的机器学习课程里强调,在进行学习之前要进行特征缩放,目的是保证这些特征都具有相近的尺度,这将帮助梯度下降算法更快地收敛。 python里常用的是preprocessing.StandardScaler() 公式为:(X-mean)/std 计算时对每个属性/每列分别进行 ...

Mon Jun 25 18:48:00 CST 2018 0 952
机器学习特征工程

一、特征工程概述 “数据决定了机器学习的上限,而算法只是尽可能逼近这个上限”,这里的数据指的就是经过特征工程得到的数据。特征工程指的是把原始数据转变为模型的训练数据的过程,它的目的就是获取更好的训练数据特征,使得机器学习模型逼近这个上限。特征工程能使得模型的性能得到提升,有时甚至在 ...

Thu May 12 18:17:00 CST 2016 0 43009
机器学习——特征工程

机器学习是从数据中自动分析获取规律(模型),并利用规律对未知数据进行预测。 数据集的构成:特征值+目标值(根据目的收集特征数据,根据特征去判断、预测)。(注意:机器学习不需要去除重复样本数据) 常用的数据集网址: Kaggle网址:https://www.kaggle.com ...

Sat Oct 23 19:38:00 CST 2021 0 105
Python 3 利用 Dlib 和 sklearn 人脸笑脸检测机器学习建模

0. 引言   利用机器学习的方法训练微笑检测模型,输入一张人脸照片,判断是否微笑;   精度在 95% 左右( 使用的数据集中 69 张没笑脸,65 张有笑脸 );     图1 测试图像与检测结果      项目实现的笑脸识别,并不是通过 计算嘴唇角度,满足一定弧度认定 ...

Sun Jan 28 21:56:00 CST 2018 1 4329
机器学习特征学习与稀疏学习

2 过滤式选择   过滤式选择和后续学习器无关,首先用特征选择过程对初始特征进行过滤,然后用过滤后的特征来训练模型。   Relief:用一个“相关统计量”的向量来度量特征的重要性,每个分量对应一个特征。 对特征子集的重要性评估为相关统计分量之和。 2.1 “相关统计量”的确定 ...

Mon Sep 12 16:42:00 CST 2016 0 4507
机器学习之异常检测

前言 以下内容是个人学习之后的感悟,转载请注明出处~ 简介   在生活中,经常会遇到这样一个对象集,有个别的对象是与大部分对象不一样的,且前者是比较罕见的。我们通常 需要去发现它,这就用到了非监督学习的异常检测算法,下面来举一些异常检测的应用 ...

Thu Aug 31 18:22:00 CST 2017 0 1668
学习笔记】机器学习特征工程

,通过专业的技巧进行数据处理,是的特征能在机器学习算法中发挥更好的作用。优质的特征往往描述了数据的固有结构 ...

Thu Mar 14 04:23:00 CST 2019 0 634
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM