这篇总结继续复习分类问题。本文简单整理了以下内容: (一)线性判别函数与广义线性判别函数 (二)感知器 (三)松弛算法 (四)Ho-Kashyap算法 闲话:本篇是本系列[机器学习基础整理]在timeline上最新的,但实际上还有(七)、(八)都发布的比这个早 ...
. 线性判别函数 . . 两类问题的判别函数 以二维模式样本为例 用判别函数进行模式分类依赖的两个因素 判别函数的几何性质:线性的和非线性的函数。 线性的是一条直线 非线性的可以是曲线 折线等 线性判别函数建立起来比较简单 实际应用较多 非线性判别函数建立起来比较复杂。 判别函数的系数:判别函数的形式确定后,主要就是确定判别函数的系数问题。 只要被研究的模式是可分的,就能用给定的模式样本集来确定 ...
2018-09-28 19:33 0 1619 推荐指数:
这篇总结继续复习分类问题。本文简单整理了以下内容: (一)线性判别函数与广义线性判别函数 (二)感知器 (三)松弛算法 (四)Ho-Kashyap算法 闲话:本篇是本系列[机器学习基础整理]在timeline上最新的,但实际上还有(七)、(八)都发布的比这个早 ...
模式识别课堂笔记 假定用于分类的判别函数的参数形式已知,直接从样本来估计判别函数的参数。不需要有关概率密度函数的确切的参数形式。因此,属于无参数估计方法。 注:虽然判别函数有需要学习的参数,但却与前面所讲的非参数估计是一个框架下的,因为线性判别法并不关心数据的生成机理,完全由样本来确定类别 ...
这是我在上模式识别课程时的内容,也有参考这里。 线性判别函数的基本概念 判别函数为线性的情况的一般表达式 式中x是d 维特征向量,又称样本向量, 称为权向量, 分别表示为 是个常数,称为阈值权。 设样本d维特征空间中描述,则两类别问题中线性判别函数的一般形式可表示成 (3-1 ...
一.作为统计判别问题的模式分类 模式识别的目的就是要确定某一个给定的模式样本属于哪一类。 可以通过对被识别对象的多次观察和测量,构成特征向量,并将其作为某一个判决规则的输入,按此规则来对样本进行分类。在获取模式的观测值时,有些事物具有确定的因果关系,即在一定的条件下,它必然会发生或必然不发生 ...
不同于模式识别中人类主动去描述某些特征给机器,机器学习可以这样理解:机器从已知的经验数据(样本)中,通过某种特定的方法(算法),自己去寻找提炼(训练/学习)出一些规律(模型);提炼出的规律就可以用来判断一些未知的事情(预测)。 也就是说,模式识别和机器学习的区别在于:前者喂给机器的是各种特征描述 ...
《模式识别和机器学习》资源 Bishop的《模式识别和机器学习》是该领域的经典教材,本文搜罗了有关的教程和读书笔记,供对比学习之用,主要搜索的资源包括CSDN:http://download.csdn.net/search?q=PRML ,Memect:http://ml.memect.com ...
模式识别与机器学习 [国科大] 视屏链接 模式: 为了能够让机器执行和完成识别任务,必须对分类识别对象进行科学的抽象,建立它的数学模型,用以描述和代替识别对象,这种对象的描述即为模式。 模式识别系统过程: 特征提取与选择 训练学习 分类识别 模式识别过程从信息层次 ...
目的 用势函数的概念来确定判别函数和划分类别界面。 基本思想 假设要划分属于两种类别ω1和ω2的模式样本,这些样本可看成是分布在n维模式空间中的点xk。 把属于ω1的点比拟为某种能源点,在点上,电位达到峰值。 随着与该点距离的增大,电位分布迅速减小,即把样本xk ...