最近看了吴恩达老师的深度学习课程,又看了python深度学习这本书,对深度学习有了大概的了解,但是在实战的时候, 还是会有一些细枝末节没有完全弄懂,这篇文章就用来总结一下用keras实现深度学习算法的时候一些我自己很容易搞错的点。 一、与序列文本有关 1.仅对序列文本进行one-hot编码 ...
输入shape:形如 samples,sequence length 的 D张量 输出shape:形如 samples, sequence length, output dim 的 D张量 重要参数 input dim: 整数,字典长度,即输入数据最大下标 output dim: 整数,代表全连接嵌入的维度 input length: 当输入序列的长度固定时,该值为其长度。如果要在该层后接Fla ...
2018-09-23 22:34 0 786 推荐指数:
最近看了吴恩达老师的深度学习课程,又看了python深度学习这本书,对深度学习有了大概的了解,但是在实战的时候, 还是会有一些细枝末节没有完全弄懂,这篇文章就用来总结一下用keras实现深度学习算法的时候一些我自己很容易搞错的点。 一、与序列文本有关 1.仅对序列文本进行one-hot编码 ...
Word2Vec和Embeddings Word2Vec其实就是通过学习文本来用词向量的方式表征词的语义信息,即通过一个嵌入空间使得语义上相似的单词在该空间内距离很近。Embedding其实就是一个映射,将单词从原先所属的空间映射到新的多维空间中,也就是把原先词所在空间嵌入到一个新的空间 ...
首先,我们有一个one-hot编码的概念。 假设,我们中文,一共只有10个字。。。只是假设啊,那么我们用0-9就可以表示完 比如,这十个字就是“我从哪里来,要到何处去” 其分别对应“0-9”,如 ...
一、keras中的Tokenizer tf.keras.preprocessing.text.Tokenizer( num_words=None, filters='!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n', lower=True ...
关于Keras的“层”(Layer) 所有的Keras层对象都有如下方法: layer.get_weights():返回层的权重(numpy array) layer.set_weights(weights):从numpy array中将权重加载到该层中,要求numpy array ...
Dense层:全连接层 Activatiion层:激活层,对一个层的输出施加激活函数 Dropout层:为输入数据施加Dropout。Dropout将在训练过程中每次更新参数时按一定概率(rate)随机断开输入神经元,Dropout层用于防止过拟合 Flatten层 ...
1 入门 2 多个输入和输出 3 共享层 考虑这样的一个问题:我们要判断连个tweet是否来源于同一个人。 首先我们对两个tweet进行处理,然后将处理的结构拼接在一起,之后跟一个逻辑回归,输出这两条tweet来自同一个人概率。 因为我们对两条tweet的处理是相同的,所以对第一条 ...
Keras的TimeDistributed层主要用途是在时间维度上进行全连接. 比如Faster RCNN,1张图生成了16个ROI,需要对每一个ROI进行分类和回归,ROI的维度是7×7×512,长度和宽度都是7,512个通道,16个ROI的的维度是16×7×7×512,需要得到16个分类 ...