目录: 一、L0,L1范数 二、L2范数 三、核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化。我们先简单的来理解下常用的L0、L1、L2和核范数规则化。最后聊下规则化项参数的选择问题。这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文。知识有限 ...
https: blog.csdn.net zouxy article details 原文转自csdn博客,写的非常好。 L : 非零的个数 L : 参数绝对值的和 L :参数平方和 ...
2018-09-05 14:59 0 932 推荐指数:
目录: 一、L0,L1范数 二、L2范数 三、核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化。我们先简单的来理解下常用的L0、L1、L2和核范数规则化。最后聊下规则化项参数的选择问题。这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文。知识有限 ...
今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化。我们先简单的来理解下常用的L0、L1、L2和核范数规则化。最后聊下规则化项参数的选择问题。这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文。知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正。谢谢 ...
L0、L1和L2范数在机器学习中的用途 参考来源:https://zhuanlan.zhihu.com/p/28023308 结论1 L0范数:向量中非0元素的个数; L1范数:向量中各个元素绝对值之和; L2范数:向量中各元素的平方和在求平方根. 结论 ...
一、范数的概念 向量范数是定义了向量的类似于长度的性质,满足正定,齐次,三角不等式的关系就称作范数。 一般分为L0、L1、L2与L_infinity范数。 二、范数正则化背景 1. 监督机器学习问题无非就是“minimizeyour error while ...
才能保证测试误差也小,而模型简单就是通过规则函数来实现的。 规则化项可以是模型参数向量的范数。如:L ...
L0、L1与L2范数、核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化。我们先简单的来理解下常用的L0、L1、L2和核范数规则化。最后聊下规则化项参数的选择问题。这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文。知识有限,以下都是我一些浅显的看法 ...
『教程』L0、L1与L2范数 一、L0范数、L1范数、参数稀疏 L0范数是指向量中非0的元素的个数。如果我们用L0范数来规则化一个参数矩阵W的话,就是希望W的大部分元素都是0,换句话说,让参数W是稀疏的。 既然L0可以实现 ...
范数(norm) 数学中的一种基本概念。在泛函分析中,它定义在赋范线性空间中,并满足一定的条件,即①非负性;②齐次性;③三角不等式。它常常被用来度量某个向量空间(或矩阵)中的每个向量的长度或大小。 这里简单地介绍以下几种向量范数的定义和含义 1、 L-P范数 与闵可夫斯基 ...