前提 这系列文章不是为了去研究那些数学公式怎么推导,而是为了能将机器学习的思想快速用代码实现。最主要是梳理一下自己的想法。 感知机 感知机,就是接受每个感知元(神经元)传输过来的数据,当数据到达某个阀值的时候就会产生对应的行为如下图,对应每个感知元有一个对应的权重,当数据到达阀值u的时候就会 ...
首先先来讲讲闲话 如果让你现在去搞机器学习,你会去吗 不会的话是因为你对这方面不感兴趣,还是因为你觉得这东西太难了,自己肯定学不来 如果你觉的太难了,很好,相信看完这篇文章,你就会有胆量踏入机器学习这一领域。 机器学习 Machine Learning ,一个在才学一年编程的人看来十分高大尚的东西,不知不觉就接触了它。暑假的时候表哥给我布置了任务,在github上有一篇DeepLearningFl ...
2018-09-07 12:37 1 6999 推荐指数:
前提 这系列文章不是为了去研究那些数学公式怎么推导,而是为了能将机器学习的思想快速用代码实现。最主要是梳理一下自己的想法。 感知机 感知机,就是接受每个感知元(神经元)传输过来的数据,当数据到达某个阀值的时候就会产生对应的行为如下图,对应每个感知元有一个对应的权重,当数据到达阀值u的时候就会 ...
简单的感知机的使用界限上一节介绍了一个简单的感知机的运作过程,如下图: 由于输出的是0和1,所以激活函数f(u)的结果也是0或者1。 虽然简单的感知机可以解决一些问题,但是当涉及到比较复杂的问题的时候简单的感知机明显无法做到我们想要的。比如XOR运算。 对于简单的感知机的权重 ...
预测是用学习得到的感知机模型对新的输入实例进行分类,是神经网络与支持向量机的基础。 2 感知 ...
Introduce 感知机模型(Perceptron)是一个最简单的有监督的二分类线性模型。他可以从两个方面进行介绍 方面一 问题分析 问题(一维):儿童免票乘车问题(孩子身高低于1.2m可以免票上车) 这转换成数学表达式就是 $x:$身高,$y:\{-1:$免票 ,$1:$购票 ...
0x01 感知机 感知机是一种二类分类的线性分类器,属于判别模型(另一种是生成模型)。简单地说,就是通过输入特征,利用超平面,将目标分为两类。感知机是神经网络和支持向量机的基础。 假设输入空间为,输出空间是.其中,为一个特征向量,。 定义从输入空间到输出空间的函数:为感知机。为感知机的权重 ...
感知机: 假设输入空间是\(\chi\subseteq R^n\),输出空间是\(\gamma =\left( +1,-1\right)\)。输入\(\chi\in X\)表示实例的特征向量,对应于输入空间的点;输出\(y\in \gamma\)表示实例的类别。由输入空间到输出空间的如 ...
多层感知机 深度学习主要关注多层模型,现在以多层感知机(multilayer perceptron,MLP)为例,介绍多层神经网络的概念。 隐藏层 多层感知机在单层神经网络的基础上引入了一到多个隐藏层(hidden layer)。隐藏层位于输入层和输出层之间。图展示了一个多层感知机的神经网络 ...
系列文章目录: 感知机 线性回归 非线性问题 多项式回归 岭回归 感知机(Perceptron)是最最最简单的机器学习算法(分类),同时也是深度学习中神经元的基础组件; 算法介绍 感知机与逻辑回归、SVM类似的是同样是构建一个分割超平面来实现对数据点的分类,不同点 ...