原文:支持向量机(SVM)算法分析——周志华的西瓜书学习

.线性可分 对于一个数据集: 如果存在一个超平面X能够将D中的正负样本精确地划分到S的两侧,超平面如下: 那么数据集D就是线性可分的,否则,不可分。 w称为法向量,决定了超平面的方向 b为位移量,决定了超平面与原点的距离。 样本空间中的任意点x到超平面X的距离 不太熟悉的可以复习高数中空间几何那一章的内容 可以写为: 使得下面两式成立的训练样本称为支持向量: 两个异类支持向量 一个等于 ,一个等 ...

2018-09-03 10:12 0 998 推荐指数:

查看详情

SVM支持向量算法

支持向量SVM)是另一类的学习系统,其众多的优点使得他成为最流行的算法之一。其不仅有扎实的理论基础,而且在许多应用领域比大多数其他算法更准确。 1、线性支持向量:可分情况 根据公式(1)<w.x>+b=0,我们知道,w定义了垂直于超平面的方向 ,如上图,w被成为 ...

Fri Jun 24 22:57:00 CST 2016 1 3242
支持向量SVM算法

支持向量(support vector machine)是一种分类算法,通过寻求结构化风险最小来提高学习机泛化能力,实现经验风险和置信范围的最小化,从而达到在统计样本量较少的情况下,亦能获得良好统计规律的目的。通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器 ...

Wed Jul 16 23:05:00 CST 2014 2 98871
Python机器学习算法支持向量SVM

SVM--简介 支持向量(Support Vector Machines)是一种二分类模型,它的目的是寻找一个超平面来对样本进行分割,分割的原则是间隔最大化,最终转化为一个凸二次规划问题来求解。 在机器学习领域,是一个有监督的学习模型,通常用来进行 ...

Fri Jun 29 07:42:00 CST 2018 0 1017
SVM支持向量分类算法

SVM(Support Vector Machine)支持向量是建立于统计学习理论上的一种二类分类算法,适合处理具备高维特征的数据集。它对数据的分类有两种模式,一种是线性可分割,另一种是线性不可分割(即非线性分割)。SVM思想是:通过某种 核函数,将数据在高维空间里 寻找一个最优超平面 ...

Fri Nov 01 22:05:00 CST 2019 0 766
SVM 支持向量算法介绍

转自:https://zhuanlan.zhihu.com/p/21932911?refer=baina 参考:http://www.cnblogs.com/LeftNotEasy/archive/2011/05/02/basic-of-svm ...

Tue Aug 15 00:12:00 CST 2017 0 3346
支持向量SVM算法的matlab的实现

支持向量SVM)的matlab的实现 支持向量是一种分类算法之中的一个,matlab中也有对应的函数来对其进行求解;以下贴一个小例子。这个例子来源于我们实际的项目。 clc; clear; N=10; %以下的数据是我们实际项目中的训练例子(例子中有8个属性 ...

Thu Mar 31 19:52:00 CST 2016 0 18395
spark算法实现——svm支持向量

svm是一种分类算法,一般先分为两类,再向多类推广一生二,二生三,三生。。。 大致可分为: 线性可分支持向量 硬间隔最大化hard margin maximization 硬间隔支持向量 线性支持向量 软间隔最大化soft margin maximization 软间隔支持向量 ...

Thu Jun 01 19:41:00 CST 2017 0 1660
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM