朴素贝叶斯与逻辑回归的区别: 朴素贝叶斯 逻辑回归 生成模型(Generative model) 判别模型(Discriminative model) 对特征x和目标y的联合分布P(x,y ...
逻辑回归 Logistic Regression 是一种经典的线性分类算法。逻辑回归虽然叫回归,但是其模型是用来分类的。 让我们先从最简单的二分类问题开始。给定特征向量x x ,x ,...,xn T以及每个特征的权重w w ,w ,...,wn T,阈值为b,目标y是两个分类标签 和 。为了便于叙述,把b并入权重向量w,记作,特征向量则扩充为。 为了简便的缘故,下面还是都写成w和x 事实上,我们 ...
2019-06-09 21:06 0 676 推荐指数:
朴素贝叶斯与逻辑回归的区别: 朴素贝叶斯 逻辑回归 生成模型(Generative model) 判别模型(Discriminative model) 对特征x和目标y的联合分布P(x,y ...
1. Classification 这篇文章我们来讨论分类问题(classification problems),也就是说你想预测的变量 y 是一个离散的值。我们会使用逻辑回归算法来解决分类问题。 之前的文章中,我们讨论的垃圾邮件分类实际上就是一个分类问题。类似的例子还有很多,例如一个在线 ...
注:最近开始学习《人工智能》选修课,老师提纲挈领的介绍了一番,听完课只了解了个大概,剩下的细节只能自己继续摸索。 从本质上讲:机器学习就是一个模型对外界的刺激(训练样本)做出反应,趋利避害(评价标准)。 1. 什么是逻辑回归? 许多人对线性回归都比较熟悉,但知道逻辑回归的人可能就要 ...
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准。感谢博主Rachel Zhang 的个人笔记,为我做个人学习笔记提供了很好的参考和榜样。 § 3. 逻辑回归 ...
线性回归是机器学习中最基础的算法,掌握了线性回归算法,有利于以后更容易地理解其它复杂的算法。 线性回归看似简单,但是其中包含了线性代数,微积分,概率等诸多方面的知识。让我们先从最简单的形式开始。 一元线性回归(Simple Linear Regression): 假设只有一个 ...
逻辑回归--简介 逻辑回归(Logistic Regression)就是这样的一个过程:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型的好坏。 Logistic回归虽然名字里带“回归”,但是它实际上 ...
http://blog.csdn.net/zouxy09/article/details/20319673 机器学习算法与Python实践之(七)逻辑回归(Logistic Regression) zouxy09@qq.com http://blog.csdn.net/zouxy09 ...
什么是逻辑回归: 逻辑回归是离散选择法模型之一,属于多重变量分析范畴,是社会学、生物统计学、临床、数量心理学、计量经济学、市场营销等统计实证分析的常用方法。逻辑回归一般用于二分类(Binary Classification)问题中,给定一些输入,输出结果是离散值。例如用逻辑回归实现一个猫分类器 ...