近年来,许多有效的在线学习算法的设计受到凸优化工具的影响。 此外,据观察,大多数先前提出的有效算法可以基于以下优雅模型联合分析: 凸集的定义: 一个向量 的Regret定义为: 如前所述,算法相对于竞争向量的集合U的Regret被定义 ...
开启一个在线学习和在线凸优化框架专题学习: .首先介绍在线学习的相关概念 在线学习是在一系列连续的回合 rounds 中进行的 在回合,学习机 learner 被给一个question: 一个向量,即为特征向量 ,为从instance domain:采样得到的。学习机给出一个预测值:,然后得到正确的答案:,从target domain:采样得到,定义损失函数为。在大多数情况下,在中,但是,允许学习 ...
2018-08-31 14:59 0 2250 推荐指数:
近年来,许多有效的在线学习算法的设计受到凸优化工具的影响。 此外,据观察,大多数先前提出的有效算法可以基于以下优雅模型联合分析: 凸集的定义: 一个向量 的Regret定义为: 如前所述,算法相对于竞争向量的集合U的Regret被定义 ...
一些在线预测问题可以转化到在线凸优化框架中。下面介绍两种凸化技术: 一些在线预测问题似乎不适合在线凸优化框架。例如,在线分类问题中,预测域(predictions domain)或损失函数不是凸的。我们描述了两种凸化技术,它们允许我们在其他场景中使用在线凸优化框架 ...
紧接上文,我们讲述在线分类问题 令,为0-1损失,我们做出如下的简化假设: 学习者的目标是相对于hypotheses set: H具有low regret,其中H中的每个函数是从到{0,1}的映射,并且regret被定义为: 我们首先证明这是一个不可能完成的任务 ...
最自然的学习规则是使用任何在过去回合中损失最小的向量。 这与Consistent算法的精神相同,它在在线凸优化中通常被称为Follow-The-Leader,最小化累积损失。 对于任何t: 我们谈到了能最小化累计损失不能说明此算法在在线学习场景 ...
在线最优化求解(Online Optimization)之五:FTRL 在上一篇博文中中我们从原理上定性比较了L1-FOBOS和L1-RDA在稀疏性上的表现。有实验证明,L1-FOBOS这一类基于梯度下降的方法有比较高的精度,但是L1-RDA却能在损失一定精度的情况下产生更好的稀疏性 ...
在线最优化求解(Online Optimization)之三:FOBOS FOBOS (Forward-Backward Splitting)是由John Duchi和Yoram Singer提出的[11]。从全称上来看,该方法应该叫FOBAS,但是由于一开始作者管这种方法叫FOLOS ...
由凸问题的性质决定的.我们将逐步的介绍凸集, 凸函数, 凸问题等. 1. 凸集(convex set) ...
最近的看的一些内容好多涉及到凸优化,没时间系统看了,简单的了解一下,凸优化的两个基本元素分别是凸函数与凸包 凸集 凸集定义如下: 也就是说在凸集内任取两点,其连线上的所有点仍在凸集之内。 凸函数 凸函数的定义如下: $\theta x+(1-\theta)y$的意思就是说 ...