1、知识点 L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择 L2正则化可以防止模型过拟合(overfitting);一定程度上,L1也可以防止过拟合 2、代码实现推荐案例 3、基于物品的协同过滤图 ...
每个人都会有这样的经历:当你在电商网站购物时,你会看到天猫给你弹出的 和你买了同样物品的人还买了XXX 的信息 当你在SNS社交网站闲逛时,也会看到弹出的 你可能认识XXX 的信息 你在微博添加关注人时,也会看到 你可能对XXX也感兴趣 等等。 所有这一切,都是背后的推荐算法运作的结果。最经典的关联规则算法是大名鼎鼎的Apriori算法,源自一个超市购物篮的故事:啤酒总是和尿布一起被购买。有兴趣的 ...
2018-08-29 14:24 1 852 推荐指数:
1、知识点 L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择 L2正则化可以防止模型过拟合(overfitting);一定程度上,L1也可以防止过拟合 2、代码实现推荐案例 3、基于物品的协同过滤图 ...
原文链接:http://tecdat.cn/?p=10911 用户和产品的潜在特征编写推荐系统矩阵分解工作原理使用潜在表征来找到类似的产品。 1. 用户和产品的潜在特征 我们可以通过为每个用户和每部电影分配属性,然后将它们相乘并合并结果来估计用户喜欢电影的程度 ...
概括分类: 1) 基于内容的推荐:这一类一般依赖于自然语言处理NLP的一些知识,通过挖掘文本的TF-IDF特征向量,来得到用户的偏好,进而做推荐。这类推荐算法可以找到用户独特的小众喜好,而且还有较好的解释性。这一类由于需要NLP的基础,本文就不多讲,在后面专门讲NLP的时候再讨 ...
机器学习: 自己的理解,机器学学习是一门多领域的交叉学科,专门研究计算机怎么模拟或者实现人类的学习方式和行为,以获取新的知识和技能,重新组织已有的知识结构和性能。 1.读《大数据工程师飞林沙的年终总结&算法数据的思考》 推荐系统:涉及到不懂的名词 1.1这个是一篇博客 ...
在现今的推荐技术和算法中,最被大家广泛认可和采用的就是基于协同过滤的推荐方法。本文将带你深入了解协同过滤的秘密。下面直接进入正题. 1. 什么是推荐算法 推荐算法最早在1992年就提出来了,但是火起来实际上是最近这些年的事情,因为互联网的爆发,有了更大的数据量可以供我们使用,推荐算法才有了很大 ...
0、序言 最近因为PAC平台自动化的需求,开始探坑推荐系统。这个乍一听去乐趣无穷的课题,对于算法大神们来说是这样的: 而对于刚接触这个领域的我来说,是这样的: 在深坑外围徘徊了一周后,我整理了一些推荐系统的基本概念以及一些有代表性的简单的算法,作为初探 ...
[机器学习]推荐系统之协同过滤算法 在现今的推荐技术和算法中,最被大家广泛认可和采用的就是基于协同过滤的推荐方法。本文将带你深入了解协同过滤的秘密。下面直接进入正题. 1. 什么是推荐算法 推荐算法最早在1992年就提出来了,但是火起来实际上是最近这些年 ...