进入更深的层次:模型构造、参数访问、自定义层和使用 GPU。 模型构建 在多层感知机的实现中,我们首先构造 Sequential 实例,然后依次添加两个全连接层。其中第一层的输出大小为 256,即隐藏层单元个数是 256;第二层的输出大小为 10,即输出层单元个数是 10。 我们之前都是用了 ...
我们将深入讲解模型参数的访问和初始化,以及如何在多个层之间共享同一份参数。 之前我们一直在使用默认的初始函数,net.initialize 。 这里我们从 MXNet 中导入了 init 这个包,它包含了多种模型初始化方法。 访问模型参数 我们知道可以通过 来访问 Sequential 类构造出来的网络的特定层。对于带有模型参数的层,我们可以通过 Block 类的 params 属性来得到它包含的 ...
2018-08-23 10:10 0 1702 推荐指数:
进入更深的层次:模型构造、参数访问、自定义层和使用 GPU。 模型构建 在多层感知机的实现中,我们首先构造 Sequential 实例,然后依次添加两个全连接层。其中第一层的输出大小为 256,即隐藏层单元个数是 256;第二层的输出大小为 10,即输出层单元个数是 10。 我们之前都是用了 ...
mxnet的设备管理 MXNet 使用 context 来指定用来存储和计算的设备,例如可以是 CPU 或者 GPU。默认情况下,MXNet 会将数据创建在主内存,然后利用 CPU 来计算。在 MXNet 中,CPU 和 GPU 可分别由 cpu() 和 gpu() 来表示。 需要 ...
1. Description - 说明 mxnet2onnx是一款将训练好的mxnet模型转换成以onnx格式保存的模型转换工具。 2. mxnet2onnx接口 onnx_mxnet.export_model(sym, params, [input_shape ...
MXNet深度学习库简介 摘要: MXNet是一个深度学习库, 支持C++, Python, R, Scala, Julia, Matlab以及JavaScript等语言; 支持命令和符号编程; 可以运行在CPU,GPU,集群,服务器,台式机或者移动设备上. mxnet是cxxnet的下一代 ...
创建向量 数据操作 广播机制 运算内存开销 NDArray和Numpy相互变换 ...
以如下的一个网络为例: name: "vgg19" layer { name: "data" type: "Input" top: "data" input_param { shape { ...
现在计算机视觉领域深度学习已经成为主流,我在美读研的时候,深度学习并未取得大的突破,当时流行的图像识别分类器多采用手工设计特征+编码+SVM(支持向量机)框架下的算法,终于到了2012年(我刚毕业),在ILSVRC上,alexnet的横空出世,将分类错误率从之前的25.7%降到 ...
利用MxNet实现图像分类任务 这篇文章将利用MxNet以及其前端gluon 实现一个完整的图像分类任务,其中主要包括以下几个方面: 图像I/O 搭建网络 进行训练 验证算法 输出结果 ...