隐语义模型(Latent factor model,以下简称LFM),是基于矩阵分解的推荐算法,在其基本算法上引入L2正则的FunkSVD算法在推荐系统领域更是广泛使用,在Spark上也有其实现。本文将对 LFM原理进行详细阐述,给出其基本算法原理。此外,还将介绍使得隐语义模型声名大噪的算法 ...
协同过滤的模型一般为m个物品,m个用户的数据,只有部分用户和部分数据之间是有评分数据的,其它部分评分是空白,此时我们要用已有的部分稀疏数据来预测那些空白的物品和数据之间的评分关系,找到最高评分的物品推荐给用户。 一般来说,协同过滤推荐分为三种类型。第一种是基于用户 user based 的协同过滤,第二种是基于项目 item based 的协同过滤,第三种是基于模型 model based 的协 ...
2018-08-16 20:25 0 4086 推荐指数:
隐语义模型(Latent factor model,以下简称LFM),是基于矩阵分解的推荐算法,在其基本算法上引入L2正则的FunkSVD算法在推荐系统领域更是广泛使用,在Spark上也有其实现。本文将对 LFM原理进行详细阐述,给出其基本算法原理。此外,还将介绍使得隐语义模型声名大噪的算法 ...
主成分分析(PCA)是一种常用于减少大数据集维数的降维方法,把大变量集转换为仍包含大变量集中大部分信息的较小变量集。 减少数据集的变量数量,自然是以牺牲精度为代价的,降维的好处是以略低的精度换取简便。因为较小的数据集更易于探索和可视化,并且使机器学习算法更容易和更快地分析数据,而不需处理无关变量 ...
[机器学习]推荐系统之协同过滤算法 在现今的推荐技术和算法中,最被大家广泛认可和采用的就是基于协同过滤的推荐方法。本文将带你深入了解协同过滤的秘密。下面直接进入正题. 1. 什么是推荐算法 推荐算法最早在1992年就提出来了,但是火起来实际上是最近这些年 ...
[机器学习]推荐系统之协同过滤算法 在现今的推荐技术和算法中,最被大家广泛认可和采用的就是基于协同过滤的推荐方法。本文将带你深入了解协同过滤的秘密。下面直接进入正题. 1. 什么是推荐算法 推荐算法最早在1992年就提出来了,但是火起来实际上是最近这些年 ...
在现今的推荐技术和算法中,最被大家广泛认可和采用的就是基于协同过滤的推荐方法。本文将带你深入了解协同过滤的秘密。下面直接进入正题. 1. 什么是推荐算法 推荐算法最早在1992年就提出来了,但是火起来实际上是最近这些年的事情,因为互联网的爆发,有了更大的数据量可以供我们使用,推荐算法才有了很大 ...
1、知识点 L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择 L2正则化可以防止模型过拟合(overfitting);一定程度上,L1也可以防止过拟合 2、代码实现推荐案例 3、基于物品的协同过滤图 ...
今天学习的是文件对话框——QFileDialog 一.描述 QFileDialog提供了一个对话框,允许用户选择文件或者目录,也允许用户遍历文件系统,用以选择一个或多个文件或者目录。 QFileDialog继承了QDialog,具有父类的各种方法。 二.功能作用 1.最简单 ...