目录 时间序列深度学习:状态 LSTM 模型预测太阳黑子 教程概览 商业应用 长短期记忆(LSTM)模型 太阳黑子数据集 构建 LSTM 模型预测太阳黑子 1 若干相关包 2 数据 ...
目录 时间序列深度学习:seq seq 模型预测太阳黑子 学习路线 商业中的时间序列深度学习 商业中应用时间序列深度学习 深度学习时间序列预测:使用 keras 预测太阳黑子 递归神经网络 设置 预处理与探索 所用的包 数据 探索性数据分析 使用 cowplot 可视化太阳黑子数据 回测:时间序列交叉验证 开发一个回测策略 可视化回测策略 LSTM 模型 数据准备 用 recipe 做数据预处理 ...
2018-08-09 00:00 0 1545 推荐指数:
目录 时间序列深度学习:状态 LSTM 模型预测太阳黑子 教程概览 商业应用 长短期记忆(LSTM)模型 太阳黑子数据集 构建 LSTM 模型预测太阳黑子 1 若干相关包 2 数据 ...
基于seq2seq的时间序列预测实验(转) https://zhuanlan.zhihu.com/p/39140472 本文使用seq2seq模型来做若干组时间序列的预测任务,目的是验证RNN这种网络结构对时间序列数据的pattern的发现能力,并在小范围内探究哪些pattern是可以被识别 ...
1. Attention与Transformer模型 Attention机制与Transformer模型,以及基于Transformer模型的预训练模型BERT的出现,对NLP领域产生了变革性提升。现在在大型NLP任务、比赛中,基本很少能见到RNN的影子了。大部分是BERT(或是其各种变体 ...
RNN,LSTM,seq2seq等模型广泛用于自然语言处理以及回归预测,本期详解seq2seq模型以及attention机制的原理以及在回归预测方向的运用。 1. seq2seq模型介绍 seq2seq模型是以编码(Encode)和解码(Decode)为代表的架构方式,seq2seq模型 ...
一、前述 架构: 问题: 1、压缩会损失信息 2、长度会影响准确率 解决办法: Attention机制:聚焦模式 “高分辨率”聚焦在图片的某个特定区域并以“低分辨率”,感知图 ...
1. 什么是seq2seq 在⾃然语⾔处理的很多应⽤中,输⼊和输出都可以是不定⻓序列。以机器翻译为例,输⼊可以是⼀段不定⻓的英语⽂本序列,输出可以是⼀段不定⻓的法语⽂本序列,例如: 英语输⼊:“They”、“are”、“watching”、“.” 法语输出:“Ils ...
【说在前面】本人博客新手一枚,象牙塔的老白,职业场的小白。以下内容仅为个人见解,欢迎批评指正,不喜勿喷![认真看图][认真看图] 【补充说明】深度学习中的序列模型已经广泛应用于自然语言处理(例如机器翻译等)、语音识别、序列生成、序列分析等众多领域! 【再说一句】本文主要介绍深度学习中序列模型 ...
2019-09-10 19:29:26 问题描述:什么是Seq2Seq模型?Seq2Seq模型在解码时有哪些常用办法? 问题求解: Seq2Seq模型是将一个序列信号,通过编码解码生成一个新的序列信号,通常用于机器翻译、语音识别、自动对话等任务。在Seq2Seq模型提出之前,深度学习 ...