原文:欧拉公式

. 欧拉公式的发现 年 月 日,欧拉 Leonhard Euler , 写了一封信给他的老师约翰 伯努利 Johann Bernoulli, ,信中他提到一个发现,微分方程: 微分方程的解可以用两种方式给出,即: 微分方程的两个解 把两个解带入方程,很容易验证其正确性。 注:当时虚数还未被数学界公认,复平面的概念要到 年才被韦塞尔提出来 最初欧拉对这个问题确实感到纳闷,不过以他那非凡的数学灵感, ...

2018-08-08 06:56 0 2268 推荐指数:

查看详情

公式

$ 的时候,公式可简化成为: $$e^{i\pi} + 1 = 0$$ 如果不了解什么是复数以及复平 ...

Sat Oct 31 22:03:00 CST 2020 0 6215
公式的证明

公式的证明 前言 在数学史上,有一个令人着迷的公式: \[e^{i\pi}+1=0 \] 它将数学里最重要的几个数字联系到了一起:两个超越数:自然常数 \(e\) ,圆周率 \(\pi\) ,虚数单位 \(i\) 和自然数的单位 ...

Sun May 02 03:52:00 CST 2021 2 2173
公式

e^(ix)=cosx+isinx cosx=[e(ix)+e(-ix)]/2 sinx=[e(ix)-e(-ix)]/(2i) 也可以展开为级数形式: sinx=x-x3/3!+x5/5!-... ...

Sat Dec 18 23:01:00 CST 2021 0 780
公式

  亲爱的...以前提起他只会想到欧拉角和MPU6050和卡尔曼滤波,天呐,这个数学家真的好流弊。   这里有一个数轴,然后在原点处加一个垂直原数轴的虚轴,那么我们就将实数扩展到了复数领域,一维的数轴成为了二维的复平面。   i为虚数单位,我将其理解为复数中的单位一。我们专业也常用j ...

Wed Apr 21 10:52:00 CST 2021 0 441
闲话复数(2)——公式

  原文链接 | https://mp.weixin.qq.com/s/jdZx1FX3MpG9XzB1rMJfTQ   公式被誉为“宇宙第一公式”,是大名鼎鼎的莱昂哈德·提出的。这位老大哥提出了很多著名的公式和定理,我们在RSA原理中遇到的函数就是他提出来的,还有图论中 ...

Tue Nov 26 03:15:00 CST 2019 0 455
公式C++实现

函数Euler(n):求[2,n]中有多少个数与n互素 直接利用公式:φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn) 其中: pi为x的素因数 每个素因数只用一次 比如90 ...

Sun Apr 07 19:04:00 CST 2019 0 499
Pick定理、公式和圆的反演

Pick定理、公式和圆的反演 Tags:高级算法 Pick定理 内容 定点都是整点的多边形,内部整点数为\(innod\),边界整点数\(ednod\),\(S=innod+\frac{ednod}{2}-1\) 证明 把每个整点近似地看成一个圆,那么多边形内部的整点 ...

Wed Jan 09 06:44:00 CST 2019 0 965
【学习笔记】公式的证明

公式: \[e^{i\theta}=\cos \theta + i \sin \theta \] 证明一 令 \[f(\theta)=\frac{e^{i\theta}}{\cos \theta + i \sin \theta} \] 对 \(f(\theta ...

Fri Nov 22 06:46:00 CST 2019 0 331
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM