下表为是否适合打垒球的决策表,预测E= {天气=晴,温度=适中,湿度=正常,风速=弱} 的场合,是否合适中打垒球。 天气 温度 湿度 风速 活动 晴 炎热 ...
分类技术 或分类法 是一种根据输入数据建立分类模型的系统方法,分类法的例子包括决策分类法,基于规则的分类法,神经网络,支持向量机和朴素贝叶斯分类法。这些技术都使用一种学习算法 learning algorithm 确定分类模型,该模型能够很好的拟合输入数据中类标号和属性集之间的联系,学习算法得到的模型不仅要很好地拟合输入数据,还要能够正确的预测未知样本的类标号。因此,训练算法的主要目标就是建立具 ...
2018-12-18 14:45 0 2454 推荐指数:
下表为是否适合打垒球的决策表,预测E= {天气=晴,温度=适中,湿度=正常,风速=弱} 的场合,是否合适中打垒球。 天气 温度 湿度 风速 活动 晴 炎热 ...
机器学习在各个领域都有广泛的应用,特别在数据分析领域有着深远的影响。决策树是机器学习中最基础且应用最广泛的算法模型。本文介绍了机器学习的相关概念、常见的算法分类和决策树模型及应用。通过一个决策树案例,着重从特征选择、剪枝等方面描述决策树的构建,讨论并研究决策树模型评估准则。最后基于 R 语言 ...
前言 本系列为机器学习算法的总结和归纳,目的为了清晰阐述算法原理,同时附带上手代码实例,便于理解。 目录 k近邻(KNN) 决策树 线性回归 逻辑斯蒂回归 朴素贝叶斯 支持向量机(SVM ...
本节使用的算法称为ID3,另一个决策树构造算法CART以后讲解。 一、概述 我们经常使用决策树处理分类问题,它的过程类似二十个问题的游戏:参与游戏的一方在脑海里想某个事物,其他参与者向他提出问题,只允许提20个问 题,问题的答案也只能用对或错回答。问问题的人通过推断分解,逐步缩小 ...
摘要:本部分对决策树几种算法的原理及算法过程进行简要介绍,然后编写程序实现决策树算法,再根据Python自带机器学习包实现决策树算法,最后从决策树引申至集成学习相关内容。 1.决策树 决策树作为一种常见的有监督学习算法,在机器学习领域通常有着不错的表现,决策树在生活中决策去做 ...
1、决策树算法 决策树用树形结构对样本的属性进行分类,是最直观的分类算法,而且也可以用于回归。不过对于一些特殊的逻辑分类会有困难。典型的如异或(XOR)逻辑,决策树并不擅长解决此类问题。 决策树的构建不是唯一的,遗憾的是最优决策树的构建属于NP问题。因此如何构建一棵好的决策树是研究的重点 ...
一、决策树的原理 决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-then结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法 。 二、决策树的现实案例 相亲 ...
本文结构: 是什么? 有什么算法? 数学原理? 编码实现算法? 1. 是什么? 简单地理解,就是根据一些 feature 进行分类,每个节点提一个问题,通过判断,将数据分为几类,再继续提问。这些问题是根据已有数据学习 ...