机器学习:从源数据清洗到特征工程建立谈金融反欺诈模型训练 本文旨在通过一个完整的实战例子,演示从源数据清洗到特征工程建立,再到模型训练,以及模型验证和评估的一个机器学习的完整流程。由于初识机器学习,会比较多的困惑,希望通过借助这个实战的例子,可以帮助大家对机器学习了一个初步的认识 ...
反欺诈应用的机器模型算法,多为二分类算法。 gbdt梯度提升决策树 Gradient Boosting Decision Tree,GBDT 算法,该算法的性能高,且在各类数据挖掘中应用广泛,表现优秀,被应用的场景较多。 logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘 疾病自动诊断 经济预测等领域,在有标注样本下训练模型对不同的欺诈情况进行二元判别。 ...
2018-08-01 16:49 0 2226 推荐指数:
机器学习:从源数据清洗到特征工程建立谈金融反欺诈模型训练 本文旨在通过一个完整的实战例子,演示从源数据清洗到特征工程建立,再到模型训练,以及模型验证和评估的一个机器学习的完整流程。由于初识机器学习,会比较多的困惑,希望通过借助这个实战的例子,可以帮助大家对机器学习了一个初步的认识 ...
导入类库 作图函数 数据获取与解析 数据为结构化数据,不需要抽特征转化, 但特征Time和Amount的数据规格和其他特征不一样, 需要对其做特征做特征缩放 ...
地址:https://www.kaggle.com/mlg-ulb/creditcardfraud 数据概述 数据集包含2013年9月欧洲持卡人通过信用卡进行的交易。该数据集显示了两天内发生的交易,在284,807笔交易中,我们有492起欺诈。数据集高度不平衡,阳性类别(欺诈)占所有交易 ...
一、任务基础 数据集包含由欧洲人于2013年9月使用信用卡进行交易的数据。此数据集显示两天内发生的交易,其中284807笔交易中有492笔被盗刷。数据集非常不平衡,正例(被盗刷)占所有交易的0.1 ...
用Laravel开发前前后后有2个月左右了,之前一直写Java,就像找到Java和PHP之前的共同点,用Java的某些原理去理解PHP会发现还是有很多共通之处的。Java的依赖注入已经是一个很常见的概 ...
六、混淆矩阵: 混淆矩阵是由一个坐标系组成的,有x轴以及y轴,在x轴里面有0和1,在y轴里面有0和1。x轴表达的是预测的值,y轴表达的是真实的值。可以对比真实值与预测值之间的差异,可以计算当前模型衡量的指标值。 这里精度的表示:(136+138)/(136+13+9+138)。之前有提到 ...
一,课题研究与背景介绍: 1,课题研究: 利用信用卡历史数据进行机器建模,构建反欺诈模型,预测新的信用卡被盗刷的可能性。 2,背景介绍: 数据集包含由欧洲人于2013年9月使用信用卡进行交易的数据。此数据集显示两天内发生的交易,其中284807笔交易中有492笔被盗刷。数据集非常不平衡 ...
二、机器学习模型评估 2.1 模型评估:基本概念 错误率(Error Rate) 预测错误的样本数a占样本总数的比例m \[E=\frac{a}{m} \] 准确率(Accuracy) 准确率=1-错误率准确率=1−错误率 误差 ...