本文介绍强化学习的基本概念及建模方法 什么是强化学习 强化学习主要解决贯续决策问题,强调一个智能体在不断的跟环境交互的过程中通过优化策略从而在整个交互过程中获得最多的回报。 图中的大脑代表智能体agent,智能体根据当前环境\(s_t\) 选择一个动作\(a_t\)执行,这个\(a_t ...
从今天开始整理强化学习领域的知识,主要参考的资料是Sutton的强化学习书和UCL强化学习的课程。这个系列大概准备写 到 篇,希望写完后自己的强化学习碎片化知识可以得到融会贯通,也希望可以帮到更多的人,毕竟目前系统的讲解强化学习的中文资料不太多。 第一篇会从强化学习的基本概念讲起,对应Sutton书的第一章和UCL课程的第一讲。 . 强化学习在机器学习中的位置 强化学习的学习思路和人比较类似,是 ...
2018-07-29 18:53 48 54073 推荐指数:
本文介绍强化学习的基本概念及建模方法 什么是强化学习 强化学习主要解决贯续决策问题,强调一个智能体在不断的跟环境交互的过程中通过优化策略从而在整个交互过程中获得最多的回报。 图中的大脑代表智能体agent,智能体根据当前环境\(s_t\) 选择一个动作\(a_t\)执行,这个\(a_t ...
0x1 强化学习简介 强化学习(Reinforcement Learning, RL)是机器学习(Machine Learning, ML)的三大分支之一。在一个强化学习问题中, 有一个决策者, 我们通常称之为智能体(agent), 它所交互的区域叫做环境(environment, env ...
在前面我们讨论了基于价值的强化学习(Value Based RL)和基于策略的强化学习模型(Policy Based RL),本篇我们讨论最后一种强化学习流派,基于模型的强化学习(Model Based RL),以及基于模型的强化学习算法框架Dyna。 基于价值的强化学习模型和基于策略的强化学习 ...
强化学习传说:第五章 基于模型的强化学习 无模型的方法是通过agent不断探索环境,不断试错,不断学习,因此导致了无模型的方法数据效率不高。而基于模型的方法则相反,它能够充分利用已有的模型,高效地利用数据。 简单的思路: 先训练得到环境模型,再利用规划求解。但是本来专家算法就是这么做 ...
这半年有几次机缘巧合的机会来给其他人科普强化学习的基本概念,我总体上是分成两部分来讲的:第一部分是强化学习背景和常用概念介绍;第二部分是 DQN、DDPG、PPO、SAC 四个算法的比较。这里分享一下第二部分的 slides。 此外我 ...
一、任务与奖赏 我们执行某个操作a时,仅能得到一个当前的反馈r(可以假设服从某种分布),这个过程抽象出来就是“强化学习”。 强化学习任务通常用马尔可夫决策过程MDP来描述: 强化学习任务的四要素 E = <X, A, P, R> E:机器处于的环境 X:状态空间 ...
1. 前言 在机器学习中,我们比较熟知的是监督式学习,非监督学习,此外还有一个大类就是强化学习。强化学习是机器学习的一个重要分支,是多学科多领域交叉的一个产物,它的本质是解决自动进行决策,并且可以做连续决策。 2. 强化学习定义 它主要包含五个元素,Agent(智能体 ...
本文是对Arthur Juliani在Medium平台发布的强化学习系列教程的个人中文翻译,该翻译是基于个人分享知识的目的进行的,欢迎交流!(This article is my personal translation for the tutorial written and posted ...