1.1为什么选择序列模型 (1)序列模型广泛应用于语音识别,音乐生成,情感分析,DNA序列分析,机器翻译,视频行为识别,命名实体识别等众多领域。 (2)上面那些问题可以看成使用(x,y)作为训练集的监督学习,但是输入与输出的对应关系有非常多的组合,比如一对一,多对多,一对多 ...
. 序列结构的各种序列 seq seq:如机器翻译,从法文翻译成英文,将会是下面这样的结构,包括编码网络和解码网络。 image to sequence:比如给一幅图像添加描述,如下图中的 一只猫站在椅子上 。同样包括编码网络和解码网络。 . 选择最可能的句子 机器翻译的本质就是一个条件语言模型,在给定输入的条件下输出最有可能的句子。 这里的条件语言模型与第一周讲的语言模型的区别在于,前者是有输 ...
2018-07-24 22:14 1 888 推荐指数:
1.1为什么选择序列模型 (1)序列模型广泛应用于语音识别,音乐生成,情感分析,DNA序列分析,机器翻译,视频行为识别,命名实体识别等众多领域。 (2)上面那些问题可以看成使用(x,y)作为训练集的监督学习,但是输入与输出的对应关系有非常多的组合,比如一对一,多对多,一对多 ...
2.1词汇表征 (1)使用one-hot方法表示词汇有两个主要的缺点,以10000个词为例,每个单词需要用10000维来表示,而且只有一个数是零,其他维度都是1,造成表示非常冗余,存储量大;第二每个 ...
Week 2 Quiz: Natural Language Processing and Word Embeddings (第二周测验:自然语言处理与词嵌入) 1.Suppose you learn ...
4.1什么是人脸识别 (1)人脸验证(face verification):1对1,输入一个照片或者名字或者ID,然后判断这个人是否是本人。 (2)人脸识别(face recognition):1对多,判断这个人是否是系统中的某一个人。 4.2One-shot学习 (1)比如一个公司的员工 ...
2.1二分类 (1)以一张三通道的64×64的图片做二分类识别是否是毛,输出y为1时认为是猫,为0时认为不是猫: y输出是一个数,x输入是64*64*3=12288的向量。 (2)以下是一些 ...
1.1计算机视觉 (1)计算机视觉的应用包括图像分类、目标检测、图像分割、风格迁移等,下图展示了风格迁移案例: (2)图像的特征量非常之大,比如一个3通道的1000*1000的照片,其特征为3 ...
表示是背景,然后就不需要考虑其他输出了,如下图所示(需要注意的是是根据图片的标签y来决定使用几个元素的) ...
一、前提 该篇为基于实现LSTM中文情感倾向分析的基础上,为提高情感倾向预测的准确度,而引入的一个注意力机制模块,通过翻阅相关学术文献和其他资料所作的归纳总结。 二、注意力机制简介 简单来说,注意力机制与人类视觉注意力相似,正如人在看事物一样,会选择重点的对象,而忽略次要对象。近几年 ...