转发:http://blog.csdn.net/zbc1090549839/article/details/44103801(请移步原文) 机器学习、数据挖掘工作中,数据前期准备、数据预处理过程、特征提取等几个步骤几乎要花费数据工程师一半的工作时间。同时,数据预处理的效果也直接影响了后续模型能否 ...
数据归一化 数据标准化 归一化 处理是在数据挖掘中的一项常见的预处理任务,很多情况下当你在数据预处理时都会浮现出一个问题,是不是要进行数据标准化处理 一般来说,数据归一化后有一个很明显的优点,最优解的寻优过程明显会变得平缓,更容易正确的收敛到最优解。 归一化前 归一化后 线性函数归一化 Min Max scaling 线性函数归一化是最常见的数据归一化的类型,它可以将原始数据用线性化的方式进行缩 ...
2018-07-18 22:55 0 783 推荐指数:
转发:http://blog.csdn.net/zbc1090549839/article/details/44103801(请移步原文) 机器学习、数据挖掘工作中,数据前期准备、数据预处理过程、特征提取等几个步骤几乎要花费数据工程师一半的工作时间。同时,数据预处理的效果也直接影响了后续模型能否 ...
一、数据为什么需要归一化处理? 归一化的目的是处理不同规模和量纲的数据,使其缩放到相同的数据区间和范围,以减少规模、特征、分布差异对模型的影响。 方法: 1. 极差变换法 2. 0均值标准化(Z-score方法) 1. Max-Min(线性归一化) Max-Min归一化 ...
1.机器学习中,为何要经常对数据做归一化: 1)归一化为什么能提高梯度下降法求解最优解的速度: 2)归一化有可能提高精度 2.归一化的类型 3.哪些机器学习不需要做归一化 ...
批归一化和层归一化 批归一化 内部协变量偏移 内部协变量偏移ICS指的是深度神经网络在训练时,随着参数的不断更新,中间隐藏层的输入分布发生较大差异,导致网络需要不断的适应新的数据分布,进而增加了学习难度。[传统解决方案:较小的学习率、合适的初始化参数] 梯度饱和 sigmoid ...
在这里主要讨论两种归一化方法: 1、线性函数归一化(Min-Max scaling) 线性函数将原始数据线性化的方法转换到[0 1]的范围,归一化公式如下: 该方法实现对原始数据的等比例缩放,其中Xnorm为归一化后的数据,X为原始数据,Xmax、Xmin分别为原始数据集的最大值和最小值 ...
当数据集的数值属性具有非常大的比例差异,往往导致机器学习的算法表现不佳,当然也有极少数特例。在实际应用中,通过梯度下降法求解的模型通常需要归一化,包括线性回归、逻辑回归、支持向量机、神经网络等模型。但对于决策树不使用,以C4.5为例,决策树在进行节点分裂时主要依据数据集D关于特征X的信息增益 ...
数据归一化(Feature Scaling) 一、为什么要进行数据归一化 原则:样本的所有特征,在特征空间中,对样本的距离产生的影响是同级的; 问题:特征数字化后,由于取值大小不同,造成特征空间中样本点的距离会被个别特征值所主导,而受其它特征的影响比较小; 例:特征 ...