原文:回归算法比较【线性回归,Ridge回归,Lasso回归】

代码实现: 结果: 总结:各回归算法在相同的测试数据中表现差距很多,且算法内的配置参数调整对自身算法的效果影响也是巨大的, 因此合理挑选合适的算法和配置合适的配置参数是使用算法的关键 ...

2018-07-16 15:06 0 2148 推荐指数:

查看详情

线性回归——lasso回归和岭回归ridge regression)

目录 线性回归——最小二乘 Lasso回归和岭回归 为什么 lasso 更容易使部分权重变为 0 而 ridge 不行? References 线性回归很简单,用线性函数拟合数据,用 mean square error (mse) 计算损失(cost ...

Sun May 12 04:04:00 CST 2019 6 12826
线性回归——Lasso回归和岭回归

线性回归——最小二乘 线性回归(linear regression),就是用线性函数 f(x)=w⊤x+b">f(x)=w⊤x+bf(x)=w⊤x+b 去拟合一组数据 D={(x1,y1),(x2,y2),...,(xn,yn)}">D={(x1,y1),(x2,y2 ...

Fri Aug 20 01:33:00 CST 2021 0 143
sklearn—LinearRegression,Ridge,RidgeCV,Lasso线性回归模型简单使用

线性回归 Ridge 回归 (岭回归Ridge 回归用于解决两类问题:一是样本少于变量个数,二是变量间存在共线性 RidgeCV:多个阿尔法,得出多个对应最佳的w,然后得到最佳的w及对应的阿尔法 Lasso 监督分类 估计稀疏系数的线性模型 ...

Mon Mar 12 19:22:00 CST 2018 0 4101
logistic 回归线性回归比较

可以参考如下文章 https://blog.csdn.net/sinat_37965706/article/details/69204397 第一节中说了,logistic 回归线性回归的区别是:线性回归是根据样本X各个维度的Xi的线性叠加(线性叠加的权重系数wi就是模型的参数)来得 ...

Tue Jun 12 18:42:00 CST 2018 0 11228
python实现线性回归lasso回归

Lasso回归于岭回归非常相似,它们的差别在于使用了不同的正则化项。最终都实现了约束参数从而防止过拟合的效果。但是Lasso之所以重要,还有另一个原因是:Lasso能够将一些作用比较小的特征的参数训练为0,从而获得稀疏解。也就是说用这种方法,在训练模型的过程中实现了降维(特征筛选)的目的 ...

Thu Apr 30 00:13:00 CST 2020 3 6147
回归Lasso回归

线性回归的一般形式 过拟合问题及其解决方法 问题:以下面一张图片展示过拟合问题 解决方法:(1):丢弃一些对我们最终预测结果影响不大的特征,具体哪些特征需要丢弃可以通过PCA算法来实现;(2):使用正则化技术,保留所有特征,但是减少特征前面的参数θ的大小,具体 ...

Sun May 06 06:17:00 CST 2018 0 3398
回归Ridge)和套索回归Lasso)的原理及理解

偏差和方差    在学习RidgeLasso之前,我们先看一下偏差和方差的概念。 机器学习算法针对特定数据所训练出来的模型并非是十全十美的,再加上数据本身的复杂性,误差不可避免。说到误差,就必须考虑其来源:模型误差 = 偏差(Bias)+ 方差(Variance)+ 数据 ...

Wed Apr 29 07:16:00 CST 2020 0 2869
再谈Lasso回归 | elastic net | Ridge Regression

前文:Lasso linear model实例 | Proliferation index | 评估单细胞的增殖指数 参考:LASSO回歸在生物醫學資料中的簡單實例 - 生信技能树 Linear least squares, Lasso,ridge regression有何本质区别? 你应该 ...

Fri Apr 06 05:17:00 CST 2018 0 1784
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM