Fork版本项目地址:SSD 作者使用了分布式训练的写法,这使得训练部分代码异常臃肿,我给出了部分注释。我对于多机分布式并不很熟,而且不是重点,所以不过多介绍,简单的给出一点训练中作者的优化手段,包含优化器选择之类的。 一、滑动平均 # =================================================================== ...
Fork版本项目地址:SSD 参考自集智专栏 一 SSD基础 在分类器基础之上想要识别物体,实质就是 用分类器扫描整张图像,定位特征位置 。这里的关键就是用什么算法扫描,比如可以将图片分成若干网格,用分类器一个格子 一个格子扫描,这种方法有几个问题: 问题 : 目标正好处在两个网格交界处,就会造成分类器的结果在两边都不足够显著,造成漏报 True Negative 。 问题 : 目标过大或过小,导 ...
2018-07-15 11:20 2 5590 推荐指数:
Fork版本项目地址:SSD 作者使用了分布式训练的写法,这使得训练部分代码异常臃肿,我给出了部分注释。我对于多机分布式并不很熟,而且不是重点,所以不过多介绍,简单的给出一点训练中作者的优化手段,包含优化器选择之类的。 一、滑动平均 # =================================================================== ...
Fork版本项目地址:SSD 一、损失函数介绍 SSD损失函数分为两个部分:对应搜索框的位置loss(loc)和类别置信度loss(conf)。(搜索框指网络生成的网格) 详细的说明如下: i指代搜索框序号,j指代真实框序号,p指代类别序号,p=0表示背景, 中取1表示此时第i个搜索框 ...
Fork版本项目地址:SSD 一、输入标签生成 在数据预处理之后,图片、类别、真实框格式较为原始,不能够直接作为损失函数的输入标签(ssd向前网络只需要图像就行,这里的处理主要需要满足loss的计算),对于一张图片(三维CHW)我们需要如下格式的数据作为损失函数标签: gclasse ...
目录: 一、SSD 二、基于SSD的极速人脸检测 三、VGG 一、SSD SSD主干网络结构(SSD是一个多级分类网络) 图1 ssd主干网络结构图 ssd中的vgg-19网络: SSD采用的主干网络是VGG网络,关于VGG的介绍大家可以看我的另外一篇博客 ...
之前写的一篇SSD论文学习笔记因为没保存丢掉了,然后不想重新写,直接进行下一步吧。SSD延续了yolo系列的思路,引入了Faster-RCNN anchor的概念。不同特征层采样,多anchor. SSD源码阅读 https://github.com/balancap/SSD-Tensorflow ...
Fork版本项目地址:SSD 上一节中我们定义了vgg_300的网络结构,实际使用中还需要匹配SSD另一关键组件:被选取特征层的搜索网格。在项目中,vgg_300网络和网格生成都被统一进一个class中,我们从class SSDNet开始谈起。 一、初始化class SSDNet 这是 ...
Fork版本项目地址:SSD 一、TFR数据读取 创建slim.dataset.Dataset对象 在train_ssd_network.py获取数据操作如下,首先需要slim.dataset.Dataset对象 # Select the dataset. # 'imagenet ...
一、论文介绍 读论文系列:Object Detection ECCV2016 SSD 一句话概括:SSD就是关于类别的多尺度RPN网络 基本思路: 基础网络后接多层feature map 多层feature map分别对应不同尺度的固定anchor 回归所有anchor对应 ...