今天读《机器学习实战》读到了使用k-临近算法改进约会网站的配对效果,道理我都懂,但是看到代码里面的数据样本集 datingTestSet2.txt 有点懵,这个样本集在哪里,只给了我一个文件名,没有任何内容啊。 上网百度了这个文件名,发现很多博主的博客里可以下载,我很好奇,同样是读《机器学习实战 ...
KNN项目实战 改进约会网站的配对效果 项目背景: 海伦女士一直使用在线约会网站寻找适合自己的约会对象。尽管约会网站会推荐不同的人选,但她并不是喜欢每一个人。经过一番总结,她发现自己交往过的人可以进行如下分类: 不喜欢的人 魅力一般的人 极具魅力的人 项目数据 海伦收集约会数据已经有了一段时间,她把这些数据存放在文本文件datingTestSet.txt中,每个样本数据占据一行,总共有 行。 d ...
2018-07-13 20:51 0 1624 推荐指数:
今天读《机器学习实战》读到了使用k-临近算法改进约会网站的配对效果,道理我都懂,但是看到代码里面的数据样本集 datingTestSet2.txt 有点懵,这个样本集在哪里,只给了我一个文件名,没有任何内容啊。 上网百度了这个文件名,发现很多博主的博客里可以下载,我很好奇,同样是读《机器学习实战 ...
下午于屋中闲居,于是翻开《机器学习实战》一书看了看“k-邻近算法”的内容,并学习了一位很厉害的博主Jack Cui的代码,自己照着码了一遍。在此感谢博主Jack Cui的知识分享。 一、k-邻近算法简介 k-邻近算法作为最简单的机器学习算法之一,其原理也浅显易懂,即:如果一个样本在特征空间 ...
1、kNN 算法 算法说明: set<X1,X2……Xn> 为已知类别数据集,预测 点Xt 的类别: (1)计算中的set中每一个点与Xt的距离 (2)按距离增序排列 (3)选择距离最小的前k个点 (4)确定前k个点所在的类别的出现频率 (5)返回频率最高的类别作为测试 ...
一、 马氏距离 我们熟悉的欧氏距离虽然很有用,但也有明显的缺点。它将样品的不同属性(即各指标或各变量)之间的差别等同看待,这一点有时不能满足实际要求。例如,在教育研究中,经常遇到对人的分析和判别,个 ...
机器学习实战这本书是基于python的,如果我们想要完成python开发,那么python的开发环境必不可少: (1)python3.52,64位,这是我用的python版本 (2)numpy 1.11.3,64位,这是python的科学计算包,是python的一个矩阵类型,包含数组 ...
转: KNN算法的缺陷 观察下面的例子,我们看到对于样本X,通过KNN算法,我们显然可以得到X应属于红点,但对于样本Y,通过KNN算法我们似乎得到了Y应属于蓝点的结论,而这个结论直观来看并没有说服力。 由上面的例子可见:该算法在分类时有个重要的不足是,当样本不平衡时 ...
kmeans算法的流程: EM思想很伟大,在处理含有隐式变量的机器学习算法中很有用。聚类算法包括kmeans,高斯混合聚类,快速迭代聚类等等,都离不开EM思想。在了解kmeans算法之前,有必要详细了解一下EM思想。 Kmeans算法属于无 ...
import pandas as pd from sklearn.model_selection import train_test_split from sklearn.neighbors ...