生成对抗网络GAN(Generative Adversarial Network) 2014年Szegedy在研究神经网络的性质时,发现针对一个已经训练好的分类模型,将训练集中样本做一些细微的改变会导致模型给出一个错误的分类结果,这种虽然发生扰动但是人眼可能识别不出来 ...
https: www.bilibili.com video av p 前面说了auto encoder,VAE可以用于生成 VAE的问题, AE的训练是让输入输出尽可能的接近,所以生成出来图片只是在模仿训练集,而无法生成他完全没有见过的,或新的图片 由于VAE并没有真正的理解和学习如何生成新的图片,所以对于下面的例子,他无法区分两个case的好坏,因为从lost上看都是比 多了一个pixel 所以 ...
2018-07-06 22:10 0 11513 推荐指数:
生成对抗网络GAN(Generative Adversarial Network) 2014年Szegedy在研究神经网络的性质时,发现针对一个已经训练好的分类模型,将训练集中样本做一些细微的改变会导致模型给出一个错误的分类结果,这种虽然发生扰动但是人眼可能识别不出来 ...
本文来自《Wasserstein GAN》,时间线为2017年1月,本文可以算得上是GAN发展的一个里程碑文献了,其解决了以往GAN训练困难,结果不稳定等问题。 1 引言 本文主要思考的是半监督学习。当我们说学习概率分布,典型的思维是学习一个概率密度。这通常是通过定义一个概率密度的参数化族 ...
0.背景 Tim Salimans等人认为之前的GANs虽然可以生成很好的样本,然而训练GAN本质是找到一个基于连续的,高维参数空间上的非凸游戏上的纳什平衡。然而不幸的是,寻找纳什平衡是一个十分困难的问题。在现有的针对特定场景算法中,GAN的实现通常是使用梯度下降的方法去训练GAN网络的目标 ...
GAN(Generative Adversarial Nets),产生式对抗网络 存在问题: 1.无法表示数据分布 2.速度慢 3.resolution太小,大了无语义信息 4.无reference 5.intend to generate same image 6.梯度消失 ...
论文信息 论文标题:Generative Adversarial Networks论文作者:Ian J. Goodfellow, Jean Pouget-Abadie ......论文来源:2014, NIPS论文地址:download 论文代码:download ...
出处 :2020 作者 : 摘要 : (复制粘贴检测)GAN with a dual-order attention model 生成器: 第一顺序注意力捕捉复制粘贴定位信息 第二顺序注意力为 patch co-occurence 寻找明显特征(discriminative ...
Duplex Generative Adversarial Network for Unsupervised Domain Adaptation 域自适应尝试将从源域获得的知识传送到目标域,即测试数据所在的域。主要的挑战在于源域和目标域之间的分布差异。大多数现有工作通常通过最小化 ...
@ 目录 一、简介 二、原理 三、网络结构 四、实例:自动生成数字0-9 五、训练GAN的技巧 六、源码 打赏 一、简介 ●lan Goodfellow 2014年提出 ●非监督式学习任务 ●使用两个深度神经网络: Generator ...