伯努利分布是一个离散型机率分布。试验成功,随机变量取值为1;试验失败,随机变量取值为0。成功机率为p,失败机率为q =1-p,N次试验后,成功期望为N*p,方差为N*p*(1-p) ,所以伯努利分布又称两点分布。 观察到的数据为D1,D2,D3,...,DN,极大似然的目标: 联合分布难 ...
极大似然估计法是求点估计的一种方法,最早由高斯提出,后来费歇尔 Fisher 在 年重新提出。它属于数理统计的范畴。 大学期间我们都学过概率论和数理统计这门课程。 概率论和数理统计是互逆的过程。概率论可以看成是由因推果,数理统计则是由果溯因。 用两个简单的例子来说明它们之间的区别。 由因推果 概率论 例 :设有一枚骰子, 面标记的是 正 , 面标记的是 反 。共投掷 次,问: 次 正 面朝上的概 ...
2018-07-06 16:06 0 7414 推荐指数:
伯努利分布是一个离散型机率分布。试验成功,随机变量取值为1;试验失败,随机变量取值为0。成功机率为p,失败机率为q =1-p,N次试验后,成功期望为N*p,方差为N*p*(1-p) ,所以伯努利分布又称两点分布。 观察到的数据为D1,D2,D3,...,DN,极大似然的目标: 联合分布难 ...
伯努利分布 伯努利分布,又名0-1分布,是一个离散概率分布。典型的示例是抛一个比较特殊的硬币,每次抛硬币只有两种结果,正面和负面。抛出硬币正面的概率为 \(p\) ,抛出负面的概率则为 \(1−p\) 。因此,对于随机变量 \(X\) ,则有: \[\begin{aligned} f(X ...
前言:介绍了最简单的最大似然估计,距离实现「朴素贝叶斯」还有一些距离。在这篇文章,我想分享一下,我所理解的「最大似然估计 - 高斯分布」。 问题 (这里都是玩具数据,为了方便理解才列出 ...
题目描述 设x1,x2,...,xn服从U(0, k)的均匀分布,求k的最大似然估计。 解: 假设随机变量x服从U(0,k)的均匀分布,则其概率密度函数为 似然函数 ...
...
最大似然估计 最大似然估计(Maximum likelihood estimation)可以简单理解为我们有一堆数据(数据之间是独立同分布的.iid),为了得到这些数据,我们设计了一个模型,最大似然估计就是求使模型能够得到这些数据的最大可能性的参数,这是一个统计(statistics)问题 ...
首先要知道什么是似然函数,根据百度百科的介绍: 设总体X服从分布P(x;θ)(当X是连续型随机变量时为概率密度,当X为离散型随机变量时为概率分布),θ为待估参数,X1,X2,…Xn是来自于总体X的样本,x1,x2…xn为样本X1,X2,…Xn的一个观察值,则样本的联合分布(当X是连续型随机变量时 ...