一、特征工程概述 “数据决定了机器学习的上限,而算法只是尽可能逼近这个上限”,这里的数据指的就是经过特征工程得到的数据。特征工程指的是把原始数据转变为模型的训练数据的过程,它的目的就是获取更好的训练数据特征,使得机器学习模型逼近这个上限。特征工程能使得模型的性能得到提升,有时甚至在 ...
Andrew在他的机器学习课程里强调,在进行学习之前要进行特征缩放,目的是保证这些特征都具有相近的尺度,这将帮助梯度下降算法更快地收敛。 python里常用的是preprocessing.StandardScaler 公式为: X mean std 计算时对每个属性 每列分别进行。 将数据按期属性 按列进行 减去其均值,并处以其方差。得到的结果是,对于每个属性 每列来说所有数据都聚集在 附近,方差 ...
2018-06-25 10:48 0 952 推荐指数:
一、特征工程概述 “数据决定了机器学习的上限,而算法只是尽可能逼近这个上限”,这里的数据指的就是经过特征工程得到的数据。特征工程指的是把原始数据转变为模型的训练数据的过程,它的目的就是获取更好的训练数据特征,使得机器学习模型逼近这个上限。特征工程能使得模型的性能得到提升,有时甚至在 ...
机器学习是从数据中自动分析获取规律(模型),并利用规律对未知数据进行预测。 数据集的构成:特征值+目标值(根据目的收集特征数据,根据特征去判断、预测)。(注意:机器学习不需要去除重复样本数据) 常用的数据集网址: Kaggle网址:https://www.kaggle.com ...
在进行特征缩放的时候,其一般做法是(X-mu)/sigma mu:代表均值 sigma:代表标准差 在matlab中,函数mean可以求特征的均值,函数std可以求特征的标准差。 假设训练集为m,特征数量为n,特征矩阵为X,则X的size为 m*n。 则 mu = mean(X)返回值 ...
2 过滤式选择 过滤式选择和后续学习器无关,首先用特征选择过程对初始特征进行过滤,然后用过滤后的特征来训练模型。 Relief:用一个“相关统计量”的向量来度量特征的重要性,每个分量对应一个特征。 对特征子集的重要性评估为相关统计分量之和。 2.1 “相关统计量”的确定 ...
,通过专业的技巧进行数据处理,是的特征能在机器学习算法中发挥更好的作用。优质的特征往往描述了数据的固有结构 ...
英文文本特征提取: 文本特征提取需要导入第三方库:sklearn.feature_extraction,调用其中的类CountVectorizer 代码如下: 注:CountVectorizer()不含像字典特征提取一样可带参数sparse,所以不能通过这种方式 ...
当数据集的数值属性具有非常大的比例差异,往往导致机器学习的算法表现不佳,当然也有极少数特例。在实际应用中,通过梯度下降法求解的模型通常需要归一化,包括线性回归、逻辑回归、支持向量机、神经网络等模型。但对于决策树不使用,以C4.5为例,决策树在进行节点分裂时主要依据数据集D关于特征X的信息增益 ...
类别型特征原始输入通常是字符串形式,除了决策树等少数模型能直接处理字符串形式的输入,对于逻辑回归、支持向量机等模型来说,类别型特征必须经过处理转换成数值型。Sklearn中提供了几个转换器来处理文本属性,下面将总结LabelEncode(序号编码)、OneHotEncoder(独热编码 ...