原文:【机器学习】--SVM从初始到应用

一 前述 SVM在 年前还是很牛逼的,但是 年之后神经网络更牛逼些,但我们还是很有必要了解SVM的。 二 具体 问题引入 要解决的问题:基于以下问题对SVM进行推导 条线都可以将两边点分类,什么样的决策边界才是最好的呢 特征数据本身如果就很难分,怎么办呢 计算复杂度怎么样 能实际应用吗 案例引入 假设有一个部队过雷区,我们肯定希望走的边界越大越好,这样踩雷的风险就低。 决策边界:选出来离雷区最远的 ...

2018-06-18 19:59 0 1004 推荐指数:

查看详情

SVM算法 机器学习

目录 梯度下降法、拉格朗日乘子法、KKT条件回顾感知器模型回顾SVM线性可分SVM线性不可分核函数SMO SVM线性可分,SVM线性不可分,核函数,要求会推导 ———————————————————————————— 学习率(步长)可以是任何数,如果是二阶 ...

Fri Jan 03 06:03:00 CST 2020 0 1066
机器学习实战之SVM

一引言:   支持向量机这部分确实很多,想要真正的去理解它,不仅仅知道理论,还要进行相关的代码编写和测试,二者想和结合,才能更好的帮助我们理解SVM这一非常优秀的分类算法   支持向量机是一种二类分类算法,假设一个平面可以将所有的样本分为两类,位于正侧的样本为一类,值为+1,而位于负一侧的样本 ...

Thu May 25 17:25:00 CST 2017 2 22597
机器学习】从SVM到SVR

注:最近在工作中,高频率的接触到了SVM模型,而且还有使用SVM模型做回归的情况,即SVR。另外考虑到自己从第一次知道这个模型到现在也差不多两年时间了,从最开始的腾云驾雾到现在有了一点直观的认识,花费了不少时间。因此在这里做个总结,比较一下使用同一个模型做分类和回归之间的差别,也纪念一下与SVM ...

Wed May 02 04:12:00 CST 2018 0 21269
机器学习小结:SVM

机器学习相关的课上,反复学习了这一经典算法,每次都有新的体会。借此机会做一个总结。   SVM是一种线性 ...

Tue Aug 28 07:51:00 CST 2012 0 7001
[机器学习]SVM原理

  SVM机器学习中神一般的存在,虽然自深度学习以来有被拉下神坛的趋势,但不得不说SVM在这个领域有着举足轻重的地位。本文从Hard SVM 到 Dual Hard SVM再引进Kernel Trick,然后推广到常用的Soft Kernel SVM。   一、Hard SVM ...

Wed Mar 11 07:39:00 CST 2015 2 1965
机器学习分类实例(sklearn)——SVM

机器学习分类实例——SVM 20180423-20180426学习笔记 25去首届数字中国会展参观了,没学习。(想偷懒)由于是最后一天,感觉展出的东西少了,因为24号闭幕了。。。但是可以去体验区。主要体验了VR,其他展出的东西要么没意思,要么看不懂,马云马化腾 ...

Wed Jun 06 23:39:00 CST 2018 0 10634
机器学习SVM多分类

实验要求数据说明 :数据集data4train.mat是一个2*150的矩阵,代表了150个样本,每个样本具有两维特征,其类标在truelabel.mat文件中,trainning sample 图展示了理想的分类类结果;方案选择:选择并实现一种两分类方法(如感知机方法,SVM ...

Sun Jul 14 20:17:00 CST 2019 0 1840
机器学习SVM调参实例

一、任务 这次我们将了解在机器学习中支持向量机的使用方法以及一些参数的调整。支持向量机的基本原理就是将低维不可分问题转换为高维可分问题,在前面的博客具体介绍过了,这里就不再介绍了。 首先导入相关标准库: %matplotlib inline import numpy as np ...

Sun Sep 29 06:04:00 CST 2019 0 1593
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM