隐语义模型: 物品 表示为长度为k的向量q(每个分量都表示 物品具有某个特征的程度) 用户兴趣 表示为长度为k的向量p(每个分量都表示 用户对某个特征的喜好程度) 用户u对物品i的兴趣可以表示为 其损失函数定义 ...
一 前述 隐语义模型是近年来推荐系统领域较为热门的话题,它主要是根据隐含特征将用户与物品联系起来。 因为用户和物品之间有着隐含的联系。所以把用户转成隐语义,然后物品转成隐语义组合,通过中介隐含因子连接。 二 具体 隐语义模型举例和求解 N代表用户,M代表物体 第一步:先分解 将用户分解成F个因子的矩阵 将物品也分解成F个因子的矩阵 F N T F M N M 其中T表示转置。 第二步:转成机器学习 ...
2018-06-12 01:42 0 1116 推荐指数:
隐语义模型: 物品 表示为长度为k的向量q(每个分量都表示 物品具有某个特征的程度) 用户兴趣 表示为长度为k的向量p(每个分量都表示 用户对某个特征的喜好程度) 用户u对物品i的兴趣可以表示为 其损失函数定义 ...
2. 隐语义模型 隐语义模型又可称为LFM(latent factor model),它从诞生到今天产生了很多著名的模型和方法,其中和该技术相关且耳熟能详的名词有pLSA、 LDA、隐含类别模型(latent class model)、隐含主题模型(latent topic model)、矩阵 ...
LFM(latent factor model)隐语义模型,这也是在推荐系统中应用相当普遍的一种模型。那这种模型跟ItemCF或UserCF的不同在于: 对于UserCF,我们可以先计算和目标用户兴趣相似的用户,之后再根据计算出来的用户喜欢的物品给目标用户推荐物品。 而ItemCF ...
使用LFM(Latent factor model)隐语义模型进行Top-N推荐 最近在拜读项亮博士的《推荐系统实践》,系统的学习一下推荐系统的相关知识。今天学习了其中的隐语义模型在Top-N推荐中的应用,在此做一个总结。隐语义模型LFM和LSI,LDA,Topic Model其实都属于隐含 ...
在一个类中的权重? 隐含语义分析技术采用基于用户行为统计的自动聚类,较好地解决了上面提出的问题。 ...
机器学习的模型泛化 1、机器学习的模型误差主要含有三个方面的误差:模型偏差、模型方差以及不可避免的误差。 2、对于机器学习训练模型的偏差主要因为对于问题本身的假设不对,比如非线性误差假设为线性误差进行训练和预测,算法层面上欠拟合是产生较大偏差的主要原因。另外主要来自于特征参量与最终结果的相关性 ...
今天给大家带来一篇如何评价模型的好坏以及模型的得分 最下面的代码最有用 一、错误率与精度(accuracy 准确) 错误率和精度是分类任务中最常用的两种性能度量,既适用于二分类任务,也适用于多分类任务。错误率是分类错误的样本数占样本总数的比例,精度则是分类正确的样本数占 ...
(原作:MSRA刘铁岩著《分布式机器学习:算法、理论与实践》。这一部分叙述很清晰,适合用于系统整理NN知识) 线性模型 线性模型是最简单的,也是最基本的机器学习模型。其数学形式如下:g(X;W)=WTX。有时,我们还会在WTX的基础上额外加入一个偏置项b,不过只要把X扩展出一维常数 ...