原文:【深度学习篇】--Seq2Seq模型从初识到应用

一 前述 架构: 问题: 压缩会损失信息 长度会影响准确率 解决办法: Attention机制:聚焦模式 高分辨率 聚焦在图片的某个特定区域并以 低分辨率 ,感知图像的周边区域的模式。通过大量实验证明,将attention机制应用在机器翻译,摘要生成,阅读理解等问题上,取得的成效显著。 比如翻译: 知识 只是聚焦前两个字。 每个C取不同的概率和值: Bucket机制: 正常情况要对所有句子进行补全 ...

2018-06-07 01:22 0 1055 推荐指数:

查看详情

NLP与深度学习(三)Seq2Seq模型与Attention机制

1. Attention与Transformer模型 Attention机制与Transformer模型,以及基于Transformer模型的预训练模型BERT的出现,对NLP领域产生了变革性提升。现在在大型NLP任务、比赛中,基本很少能见到RNN的影子了。大部分是BERT(或是其各种变体 ...

Thu Sep 02 08:45:00 CST 2021 0 286
深度学习seq2seq模型以及Attention机制

RNN,LSTM,seq2seq模型广泛用于自然语言处理以及回归预测,本期详解seq2seq模型以及attention机制的原理以及在回归预测方向的运用。 1. seq2seq模型介绍   seq2seq模型是以编码(Encode)和解码(Decode)为代表的架构方式,seq2seq模型 ...

Wed Nov 15 02:49:00 CST 2017 0 8972
介绍 Seq2Seq 模型

2019-09-10 19:29:26 问题描述:什么是Seq2Seq模型Seq2Seq模型在解码时有哪些常用办法? 问题求解: Seq2Seq模型是将一个序列信号,通过编码解码生成一个新的序列信号,通常用于机器翻译、语音识别、自动对话等任务。在Seq2Seq模型提出之前,深度学习 ...

Wed Sep 11 03:46:00 CST 2019 0 473
时间序列深度学习seq2seq 模型预测太阳黑子

目录 时间序列深度学习seq2seq 模型预测太阳黑子 学习路线 商业中的时间序列深度学习 商业中应用时间序列深度学习 深度学习时间序列预测:使用 keras 预测太阳黑子 递归神经网络 ...

Thu Aug 09 08:00:00 CST 2018 0 1545
李宏毅深度学习笔记-Seq2seq

在讲Sequence Generation之前,再复习下RNN和有门的RNN(LSTM,GRU) 之前告诉你说,RNN是一个有记忆的神经网络,但今天从另外一个角度来讲RNN。我们说RNN特别 ...

Sat Nov 07 04:49:00 CST 2020 0 523
seq2seq聊天模型(三)—— attention 模型

注意力seq2seq模型 大部分的seq2seq模型,对所有的输入,一视同仁,同等处理。 但实际上,输出是由输入的各个重点部分产生的。 比如: (举例使用,实际比重不是这样) 对于输出“晚上”, 各个输入所占比重: 今天-50%,晚上-50%,吃-100%,什么-0% 对于输出“吃 ...

Sat Jan 26 20:44:00 CST 2019 0 603
Seq2Seq模型 与 Attention 策略

Seq2Seq模型 传统的机器翻译的方法往往是基于单词与短语的统计,以及复杂的语法结构来完成的。基于序列的方式,可以看成两步,分别是 Encoder 与 Decoder,Encoder 阶段就是将输入的单词序列(单词向量)变成上下文向量,然后 decoder根据这个向量来预测翻译 ...

Sun May 19 00:43:00 CST 2019 0 1001
序列到序列模型(seq2seq)

1. 什么是seq2seq   在⾃然语⾔处理的很多应⽤中,输⼊和输出都可以是不定⻓序列。以机器翻译为例,输⼊可以是⼀段不定⻓的英语⽂本序列,输出可以是⼀段不定⻓的法语⽂本序列,例如:   英语输⼊:“They”、“are”、“watching”、“.”   法语输出:“Ils ...

Wed Apr 07 16:32:00 CST 2021 0 277
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM