衡量线性回归法的指标:MSE, RMSE和MAE 举个栗子: 对于简单线性回归,目标是找到a,b 使得尽可能小 其实相当于是对训练数据集而言的,即 当我们找到a,b后,对于测试数据集而言 ,理所当然,其衡量标准可以是 但问题是,这个衡量标准和m相关。 (当10000个样本误差累积 ...
一 MSE RMSE MAE 思路:测试数据集中的点,距离模型的平均距离越小,该模型越精确 注:使用平均距离,而不是所有测试样本的距离和,因为距离和受样本数量的影响 公式: MSE:均方误差 RMSE:均方根误差 MAE:平均绝对误差 二 具体实现 自己的代码 调用scikit learn中的算法 RMSE和MAE的比较 量纲一样:都是原始数据中y对应的量纲 RMSE gt MAE: 这是一个数学 ...
2018-05-29 11:33 0 26772 推荐指数:
衡量线性回归法的指标:MSE, RMSE和MAE 举个栗子: 对于简单线性回归,目标是找到a,b 使得尽可能小 其实相当于是对训练数据集而言的,即 当我们找到a,b后,对于测试数据集而言 ,理所当然,其衡量标准可以是 但问题是,这个衡量标准和m相关。 (当10000个样本误差累积 ...
四、衡量回归的性能指标 1、均方误差-MSE(Mean Squared Error) 其中y^i表示第 i 个样本的真实标签,p^i表示模型对第 i 个样本的预测标签。 线性回归的目的就是让损失函数最小。那么模型训练出来了,我们在测试集 ...
分类问题的评价指标是准确率,那么回归算法的评价指标就是MSE,RMSE,MAE、R-Squared。下面一一介绍 均方误差(MSE) MSE (Mean Squared Error)叫做均方误差。看公式 这里的y是测试集 ...
分类问题的评价指标是准确率,那么回归算法的评价指标就是MSE,RMSE,MAE、R-Squared。 MSE和MAE适用于误差相对明显的时候,大的误差也有比较高的权重,RMSE则是针对误差不是很明显的时候;MAE是一个线性的指标,所有个体差异在平均值上均等加权 ...
前言 分类问题的评价指标是准确率,那么回归算法的评价指标就是MSE,RMSE,MAE、R-Squared。下面一一介绍 均方误差(MSE) MSE (Mean Squared Error)叫做均方误差。看公式 ...
简书 原作者 skullfang https://www.jianshu.com/p/9ee85fdad150 https://blog.csdn.net/zrh_CSDN/article/details/81190001 分类问题的评价指标是准确率,那么回归算法的评价指标就是MSE,RMSE ...
衡量线性回归法的指标 MSE,RMS,MAE以及评价回归算法 R Square 衡量线性回归法的指标 对于分类问题来说,我们将原始数据分成了训练数据集和测试数据集两部分,我们使用训练数据集得到模型以后使用测试数据集进行测试然后和测试数据集自带的真实的标签进行对比,那么这样一来,我们就得 ...
在回归任务(对连续值的预测)中,常见的评估指标(Metric)有:平均绝对误差(Mean Absolute Error,MAE)、均方误差(Mean Square Error,MSE)、均方根误差(Root Mean Square Error,RMSE)和平均绝对百分比误差(Mean ...