在神经网络中,当我们的网络层数越来越多时,网络的参数也越来越多,如何对网络进行训练呢?我们需要一种强大的算法,无论网络多复杂,都能够有效的进行训练。在众多的训练算法中,其中最杰出的代表就是BP算法,它是至今最成功的神经网络学习算法。在实际任务中,大部分都是使用的BP算法来进行网络训练 ...
正向传播 . 浅层神经网络 为简单起见,先给出如下所示的简单神经网络: 该网络只有一个隐藏层,隐藏层里有四个单元,并且只输入一个样本,该样本表示成一个三维向量,分别为为 x , x 和 x 。网络的输出为一个标量,用 hat y 表示。考虑该神经网络解决的问题是一个二分类的问题,把网络的输出解释为正样本的概率。比方说输入的是一张图片 当然图片不可能只用三维向量就可以表示,这里只是举个例子 ,该神 ...
2018-05-24 22:55 0 1181 推荐指数:
在神经网络中,当我们的网络层数越来越多时,网络的参数也越来越多,如何对网络进行训练呢?我们需要一种强大的算法,无论网络多复杂,都能够有效的进行训练。在众多的训练算法中,其中最杰出的代表就是BP算法,它是至今最成功的神经网络学习算法。在实际任务中,大部分都是使用的BP算法来进行网络训练 ...
详解神经网络的前向传播和反向传播本篇博客是对Michael Nielsen所著的《Neural Network and Deep Learning》第2章内容的解读,有兴趣的朋友可以直接阅读原文Neural Network and Deep Learning。 对神经网络有些了解的人 ...
神经网络的前向传播和反向传播公式详细推导 本篇博客是对Michael Nielsen所著的《Neural Network and Deep Learning》第2章内容的解读,有兴趣的朋友可以直接阅读原文Neural Network and Deep Learning。 对神经网络有些了解 ...
1 神经网络模型 以下面神经网络模型为例,说明神经网络中正向传播和反向传播过程及代码实现 1.1 正向传播 (1)输入层神经元\(i_1,i_2\),输入层到隐藏层处理过程 \[HiddenNeth_1 = w_1i_1+w_2i_2 + b_1 ...
为了搞明白这个没少在网上搜,但是结果不尽人意,最后找到了一篇很好很详细的证明过程,摘抄整理为 latex 如下。 (原文:https://blog.csdn.net/weixin_41718085/ ...
反向传播算法详细推导 反向传播(英语:Backpropagation,缩写为BP)是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。该方法对网络中所有权重计算损失函数的梯度。这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数 ...
BP神经网络:误差反向传播算法公式推导 开端: BP算法提出 1. BP神经网络参数符号及激活函数说明 2. 网络输出误差(损失函数)定义 3. 隐藏层与输出层间的权重更新公式推导 ...
误差逆传播算法是迄今最成功的神经网络学习算法,现实任务中使用神经网络时,大多使用BP算法进行训练。 给定训练集\(D={(x_1,y_1),(x_2,y_2),......(x_m,y_m)},x_i \in R^d,y_i \in R^l\),即输入示例由\(d\)个属性描述,输出\(l ...