1.深度学习中的正则化 提高泛化能力,防止过拟合 大多数正则化策略都会对估计进行正则化,估计的正则化以偏差的增加换取方差的减少 正则化方法是在训练数据不够多时,或者over training时,常常会导致过拟合(overfitting)。这时向原始模型引入额外信息,以便防止 ...
一 正则化介绍 问题:为什么要正则化 NFL 没有免费的午餐 定理: 没有一种ML算法总是比别的好 好算法和坏算法的期望值相同,甚至最优算法跟随机猜测一样 前提:所有问题等概率出现且同等重要 实际并非如此,具体情况具体分析,把当前问题解决好就行了 不要指望找到放之四海而皆准的万能算法 方差和偏差: 过拟合与欠拟合: 训练集和测试集 机器学习目标: 特定任务上表现良好的算法 泛化能力强 gt 验证 ...
2018-05-23 17:00 0 1670 推荐指数:
1.深度学习中的正则化 提高泛化能力,防止过拟合 大多数正则化策略都会对估计进行正则化,估计的正则化以偏差的增加换取方差的减少 正则化方法是在训练数据不够多时,或者over training时,常常会导致过拟合(overfitting)。这时向原始模型引入额外信息,以便防止 ...
正则化方法有如下几种: 一、参数范数惩罚 其中L2、L1参数正则化介绍与关系如下 1、L2 参数正则化 直观解释如下: 2、L1 参数正则化 二、获取更多数据(扩样本) 避免过拟合的基本方法之一是从数据源获得更多数据,当训练数据 ...
正则化的基本概念之前博客已有记录, 这里仅对正则化的实现做一点介绍 权重衰减(weight decay) 模型的复杂性——如何衡量函数与0的距离——Lp范数 L2">L2正则化线性模型构成经典的岭回归(ridge regression)算法, L1">L1正则化线性回归通常被称为套索 ...
提前终止 在对模型进行训练时,我们可以将我们的数据集分为三个部分,训练集、验证集、测试集。我们在训练的过程中,可以每隔一定量的step,使用验证集对训练的模型进行预测,一般来说,模型在训练集和验证集的损失变化如下图所示: 可以看出,模型在验证集上的误差在一开始是随着训练集的误差 ...
前言 本文为学习《深度学习入门》一书的学习笔记,详情请阅读原著 五、CNN的实现 搭建进行手写数字识别的 CNN。这里要实现如图 7-23 所示的 CNN。 图 7-23 简单 CNN 的网络构成 如图 7-23 所示,网络的构成是“Convolution - ReLU ...
神经网络的拟合能力非常强,通过不断迭代,在训练数据上的误差率往往可以降到非常低,从而导致过拟合(从偏差-方差的角度来看,就是高方差)。因此必须运用正则化方法来提高模型的泛化能力,避免过拟合。 在传统机器学习算法中,主要通过限制模型的复杂度来提高泛化能力,比如在损失函数中加入L1范数或者L2范数 ...
目录 基本概念 机器学习中的一个核心问题是设计不仅在训练集上误差小,而且在新样本上泛化能力好的算法。许多机器学习算法都需要采取相应的策略来减少测试误差,这些策略被统称为正则化。而神经网络由于其强大的表示能力经常遭遇过拟合,所以需要使用许多不同形式的正则化策略 ...
第四章 数值计算(numerical calculation)和第五章 机器学习基础下去自己看。 一、深度前馈网络(Deep Feedfarward Network,DFN)概要: DFN:深度前馈网络,或前馈神经网络(FFN)/多层感知机(MLP) 目标:近似模拟某函数f y=f ...