通常说的SVM与逻辑回归的联系一般指的是软间隔的SVM与逻辑回归之间的关系,硬间隔的SVM应该是与感知机模型的区别和联系。而且工程中也不能要求所有的点都正确分类,训练数据中噪声的存在使得完全正确分类很可能造成过拟合。 软间隔SVM与逻辑回归的联系 要说软间隔SVM与联系就要看软间隔 ...
逻辑回归详细推导:http: lib.csdn.net article machinelearning 面试常见问题:https: www.cnblogs.com ModifyRong p .html LR和SVM有什么相同点 都是监督分类算法,判别模型 LR和SVM都可以处理分类问题,且一般都用于处理线性二分类问题 在改进的情况下可以处理多分类问题 两个方法都可以增加不同的正则化项,如L L 等 ...
2018-05-11 22:23 0 1096 推荐指数:
通常说的SVM与逻辑回归的联系一般指的是软间隔的SVM与逻辑回归之间的关系,硬间隔的SVM应该是与感知机模型的区别和联系。而且工程中也不能要求所有的点都正确分类,训练数据中噪声的存在使得完全正确分类很可能造成过拟合。 软间隔SVM与逻辑回归的联系 要说软间隔SVM与联系就要看软间隔 ...
线性回归是回归模型 感知器、逻辑回归以及SVM是分类模型 线性回归:f(x)=wx+b 感知器:f(x)=sign(wx+b)其中sign是个符号函数,若wx+b>=0取+1,若wx+b<0取-1 它的学习策略是最小化误分类点到超平面的距离, 逻辑回归:f(x ...
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~ 吴恩达老师课程原地址 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.1 SVM损失函数 从逻辑回归到支持向量机 为了描述支持向量机,事实上,我将会从逻辑回归开始展示 ...
一、SVM 思想在解决回归问题上的体现 回归问题的本质:找到一条直线或者曲线,最大程度的拟合数据点; 怎么定义拟合,是不同回归算法的关键差异; 线性回归定义拟合方式:让所有数据点到直线的 MSE 的值最小; SVM 算法定义拟合的方式:在距离 Margin 的区域内 ...
1. Classification 这篇文章我们来讨论分类问题(classification problems),也就是说你想预测的变量 y 是一个离散的值。我们会使用逻辑回归算法来解决分类问题。 之前的文章中,我们讨论的垃圾邮件分类实际上就是一个分类问题。类似的例子还有很多,例如一个在线 ...
一、逻辑回归的概念 逻辑回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,经济预测等领域。逻辑回归从本质来说属于二分类问题,是基于Sigmoid函数(又叫“S型函数”)的有监督二类分类模型。 二、Sigmoid函数 Sigmoid函数公式 ...
1、逻辑函数 假设数据集有n个独立的特征,x1到xn为样本的n个特征。常规的回归算法的目标是拟合出一个多项式函数,使得预测值与真实值的误差最小: 而我们希望这样的f(x)能够具有很好的逻辑判断性质,最好是能够直接表达具有特征x的样本被分到某类的概率。比如f(x)>0.5的时候能够表示 ...
注:最近开始学习《人工智能》选修课,老师提纲挈领的介绍了一番,听完课只了解了个大概,剩下的细节只能自己继续摸索。 从本质上讲:机器学习就是一个模型对外界的刺激(训练样本)做出反应,趋利避害(评价标准)。 1. 什么是逻辑回归? 许多人对线性回归都比较熟悉,但知道逻辑回归的人可能就要 ...