tf.keras 是 TensorFlow2 引入的高度封装框架,可以快速搭建神经网络模型。下面介绍一些常用API,更多内容可以参考官方文档:tensorflow 1 tf.keras 搭建神经网络六步法 import train, test model ...
一 神经网络的实现过程 准备数据集,提取特征,作为输入喂给神经网络 搭建神经网络结构,从输入到输出 大量特征数据喂给 NN,迭代优化 NN 参数 使用训练好的模型预测和分类 二 前向传播 前向传播就是搭建模型的计算过程,可以针对一组输入给出相应的输出。 举例:假如生产一批零件, 体积为 x , 重量为 x , 体积和重量就是我们选择的特征,把它们喂入神经网络, 当体积和重量这组数据走过神经网络后会 ...
2018-05-09 09:12 0 7059 推荐指数:
tf.keras 是 TensorFlow2 引入的高度封装框架,可以快速搭建神经网络模型。下面介绍一些常用API,更多内容可以参考官方文档:tensorflow 1 tf.keras 搭建神经网络六步法 import train, test model ...
以下内容主要用于完善上节六步法搭建神经网络的功能, import train, test <数据增强> model = tf.keras.models.Sequential model.compile model.fit <断点续训> ...
一、循环神经网络简介 循环神经网络的主要用途是处理和预测序列数据。循环神经网络刻画了一个序列当前的输出与之前信息的关系。从网络结构上,循环神经网络会记忆之前的信息,并利用之前的信息影响后面节点的输出。 下图展示了一个典型的循环神经网络。 循环神经网络的一个重要的概念 ...
一、完善常用概念和细节 1、神经元模型: 之前的神经元结构都采用线上的权重w直接乘以输入数据x,用数学表达式即,但这样的结构不够完善。 完善的结构需要加上偏置,并加上激励函数。用数学公式表示为:。其中f为激励函数。 神经网络就是由以这样的神经元为基本单位构成 ...
基础概念: 卷积神经网络(CNN):属于人工神经网络的一种,它的权值共享的网络结构显著降低了模型的复杂度,减少了权值的数量。卷积神经网络不像传统的识别算法一样,需要对数据进行特征提取和数据重建,可以直接将图片作为网络的输入,自动提取特征,并且对图形的变形等具有高度不变形。在语音分析和图像识别 ...
一、深度学习与深层神经网络 深层神经网络是实现“多层非线性变换”的一种方法。 深层神经网络有两个非常重要的特性:深层和非线性。 1.1线性模型的局限性 线性模型:y =wx+b 线性模型的最大特点就是任意线性模型的组合仍然还是线性模型。 如果只通过线性变换,任意层的全连接神经网络 ...
神经网络算法以及Tensorflow的实现 一、多层向前神经网络(Multilayer Feed-Forward Neural Network) 多层向前神经网络由三部分组成:输入层(input layer), 隐藏层 (hidden layers), 输入层 (output ...
1.标准卷积神经网络 标准的卷积神经网络由输入层、卷积层(convolutional layer)、下采样层(downsampling layer)、全连接层(fully—connected layer)和输出层构成。 卷积层也称为检测层 下采样层也称为池化层(pooling ...