关于分类问题的metrics有很多,这里仅介绍几个常用的标准。 1.Accuracy score(准确率) 假设真实值为\(y\),预测值为\(\hat{y}\),则Accuracy score的计算公式为: \(accuracy(y,\hat{y}) = \dfrac 1 m ...
metrics是sklearn用来做模型评估的重要模块,提供了各种评估度量,现在自己整理如下: 一.通用的用法:Common cases: predefined values . sklearn官网上给出的指标如下图所示: . 除了上图中的度量指标以外,你还可以自定义一些度量指标:通过sklearn.metrics.make scorer 方法进行定义 make scorer有两种典型的用法: 用 ...
2018-04-17 19:29 0 1954 推荐指数:
关于分类问题的metrics有很多,这里仅介绍几个常用的标准。 1.Accuracy score(准确率) 假设真实值为\(y\),预测值为\(\hat{y}\),则Accuracy score的计算公式为: \(accuracy(y,\hat{y}) = \dfrac 1 m ...
:sklearn.metrics.accuracy_score(y_true, y_pred, normalize=True, sample_we ...
https://www.cnblogs.com/mindy-snail/p/12445973.html 1.confusion_matrix 利用混淆矩阵进行评估 混淆矩阵说白了就是一张表格- 所有正确的预测结果都在对角线上,所以从混淆矩阵中可以很方便直观的看出哪里有错 ...
sklearn.metrics.classification_report()模型评估的一种,输出一个报告 参数说明 y_true:1 维数组,真实数据的分类标签 y_pred:1 维数组,模型预测的分类标签 labels:列表,需要评估的标签名 ...
1.confusion_matrix 理论部分见https://www.cnblogs.com/cxq1126/p/12990784.html#_label2 2.classification_report y_true和y_pred的shape=(N ...
【分类指标】 1.accuracy_score(y_true,y_pre) : 精度 2.auc(x, y, reorder=False) : ROC曲线下的面积;较大的AUC代表了较好的 ...
用keras搭好模型架构之后的下一步,就是执行编译操作。在编译时,经常需要指定三个参数 loss optimizer metrics 这三个参数有两类选择: 使用字符串 使用标识符,如keras.losses,keras.optimizers,metrics包下 ...
classification_report的调用为:classification_report(y_true, y_pred, labels=None, target_names=None, sample_weight=None, digits=2, output_dict=False ...