前言: 上一篇比较详细的介绍了卡方检验和卡方分布。这篇我们就实际操刀,找到一些训练集,正所谓纸上得来终觉浅,绝知此事要躬行。然而我在躬行的时候,发现了卡方检验对于文本分类来说应该把公式再变形一般,那样就完美了。 目录: 文本分类学习(一)开篇 文本分类学习(二)文本表示 ...
前言: 上一篇提到了特征提取,或者叫做降维。在文本分类中,特征提取算法的优劣对于文本分类的结果具有非常大的影响。 所以选择效果好的特征提取算法是文本分类前中很重要的步骤。于是这篇就对卡方检验做一个介绍。这是一个效果很好的特征提取方法。 之前对卡方检验做过介绍:卡方检验是通过对特征进行打分然后排序,选择排名靠前的特征来表示文本。 目录: 文本分类学习 一 开篇 文本分类学习 二 文本表示 文本分类学 ...
2018-04-09 17:55 4 10763 推荐指数:
前言: 上一篇比较详细的介绍了卡方检验和卡方分布。这篇我们就实际操刀,找到一些训练集,正所谓纸上得来终觉浅,绝知此事要躬行。然而我在躬行的时候,发现了卡方检验对于文本分类来说应该把公式再变形一般,那样就完美了。 目录: 文本分类学习(一)开篇 文本分类学习(二)文本表示 ...
或一个语料库中的其中一份文件的重要程度。因为它综合表征了该词在文档中的重要程度和文档区分度。但在文本分类中 ...
特征选择的常用方法之一是卡方检验,作为一个filter model的代表,卡方检验属于简单易计算的Feature weight algorithm(通过一定的measure方法给特征赋上一定的weight来表征与类别之间的相关度,通过weight大于一定阈值或选取topk个weight来进行 ...
常采用特征选择方法。常见的六种特征选择方法: 1)DF(Document Frequency) 文档频率 DF:统计特征词出现的文档数量,用来衡量某个特征词的重要性 2)MI(Mutual Information) 互信息法 互信息法用于衡量特征词与文档类别直接 ...
接着上一篇。在正式的尝试使用文本分类算法分类文本的时候,我们得先准备两件事情: 一,准备适量的训练文本;二,选择合适的方法将这些训练文本进行表示(也就是将文本换一种方式表示) 大家都知道文本其实就是很多词组成的文章啊。所以很自然的就想到用一系列词来表示文本。比如我这篇文章,将其分词之后 ...
上一篇中,主要说的就是词袋模型。回顾一下,在进行文本分类之前,我们需要把待分类文本先用词袋模型进行文本表示。首先是将训练集中的所有单词经过去停用词之后组合成一个词袋,或者叫做字典,实际上一个维度很大的向量。这样每个文本在分词之后,就可以根据我们之前得到的词袋,构造成一个向量,词袋中有多少个词 ...
Python有包可以直接实现特征选择,也就是看自变量对因变量的相关性。今天我们先开看一下如何用卡方检验实现特征选择。 1. 首先import包和实验数据: 结果输出: 2. 使用卡方检验来选择特征 结果输出为:array([[ 1.4, 0.2 ...
直接从特征提取,跳到了BoostSVM,是因为自己一直在写程序,分析垃圾文本,和思考文本分类用于识别垃圾文本的短处。自己学习文本分类就是为了识别垃圾文本。 中间的博客待自己研究透彻后再补上吧。 因为获取垃圾文本的时候,发现垃圾文本不是简单的垃圾文本,它们具有多个特性: 1. 种类繁多 ...