原文链接:https://www.cnblogs.com/guoyaohua/p/8724433.html 这几天面试经常被问到BN层的原理,虽然回答上来了,但还是感觉答得不是很好,今天仔细研究了一下Batch Normalization的原理,以下为参考网上几篇文章总结 ...
这几天面试经常被问到BN层的原理,虽然回答上来了,但还是感觉答得不是很好,今天仔细研究了一下Batch Normalization的原理,以下为参考网上几篇文章总结得出。 Batch Normalization作为最近一年来DL的重要成果,已经广泛被证明其有效性和重要性。虽然有些细节处理还解释不清其理论原因,但是实践证明好用才是真的好,别忘了DL从Hinton对深层网络做Pre Train开始就 ...
2018-04-05 21:50 22 196176 推荐指数:
原文链接:https://www.cnblogs.com/guoyaohua/p/8724433.html 这几天面试经常被问到BN层的原理,虽然回答上来了,但还是感觉答得不是很好,今天仔细研究了一下Batch Normalization的原理,以下为参考网上几篇文章总结 ...
1.什么是标准化? 标准化:使数据符合 0 均值,1 为标准差的分布。 神经网络对0附近的数据更敏感,但是随着网络层数的增加,特征数据会出现偏离0均值的情况,标准化能够使数据符合0均值,1为标准差的分布,把偏移的特征数据重新拉回到0附近 Batch Normalization(批标准化 ...
Normalization(简称BN)就是对每一批数据进行归一化,确实如此,对于训练中某一个batch的数据{x1 ...
本篇博文转自:https://www.cnblogs.com/guoyaohua/p/8724433.html Batch Normalization作为最近一年来DL的重要成果,已经广泛被证明其有效性和重要性。虽然有些细节处理还解释不清其理论原因,但是实践证明好用才是真的好,别忘了DL ...
转载: https://www.cnblogs.com/wmr95/articles/9450252.html 这篇文章解释起来通俗易懂。方便后续自己查阅 Batch Normalization作为最近一年来DL的重要成果,已经广泛被证明其有效性和重要性。虽然有些细节处理还解释不清 ...
论文:Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift Internal Covariate Shift 深度神经网络涉及到很多层 ...
在机器学习领域中,有一个重要的假设:独立同分布假设,也就是假设训练数据和测试数据是满足相同分布的,否则在训练集上学习到的模型在测试集上的表现会比较差。而在深层神经网络的训练中,当中间神经层的前一层参数发生改变时,该层的输入分布也会发生改变,也就是存在内部协变量偏移问题(Internal ...
1、Batch Normalization的引入 在机器学习领域有个很重要的假设:IID独立同分布假设,也就是假设训练数据和测试数据是满足相同分布的,这是通过训练数据获得的模型能够在测试集上获得好的效果的一个基本保障。在深度学习网络中,后一层的输入是受前一层的影响的,而为了方便训练网络 ...