相对于深度学习,传统机器学习的流程往往由多个独立的模块组成,比如在一个典型的自然语言处理(Natural Language Processing)问题中,包括分词、词性标注、句法分析、语义分析等多个独立步骤,每个步骤是一个独立的任务,其结果的好坏会影响到下一步骤,从而影响整个训练的结果,这是非端 ...
本章通过一个例子,介绍机器学习的整个流程。 . 使用真实数据集练手 Working with Real Data 国外一些获取数据的网站: Popular open data repositories: UC Irvine Machine Learning Repository Kaggle datasets Amazon s AWS datasets Meta portals they list ...
2018-03-22 20:23 0 2132 推荐指数:
相对于深度学习,传统机器学习的流程往往由多个独立的模块组成,比如在一个典型的自然语言处理(Natural Language Processing)问题中,包括分词、词性标注、句法分析、语义分析等多个独立步骤,每个步骤是一个独立的任务,其结果的好坏会影响到下一步骤,从而影响整个训练的结果,这是非端 ...
相对于深度学习,传统机器学习的流程往往由多个独立的模块组成,比如在一个典型的自然语言处理(Natural Language Processing)问题中,包括分词、词性标注、句法分析、语义分析等多个独立步骤,每个步骤是一个独立的任务,其结果的好坏会影响到下一步骤,从而影响整个训练的结果,这是 ...
2.1经验误差与过拟合 错误率 = a个样本分类错误/m个样本 精度 = 1 - 错误率 误差:学习器实际预测输出与样本的真是输出之间的差异。 训练误差:即经验误差。学习器在训练集上的误差。 泛化误差:学习器在新样本上的误差。 过拟合:学习器把训练样本学的”太好”,把不太一般 ...
【第2章 模型评估与选择】 〖一、知识点归纳〗 一、经验误差与过拟合 【分类】:对是离散值的结果进行预测。 【回归】:对是连续值的结果进行预测。 分类和回归属于监督学习。 【错误率】:分类错误的样本数占样本总数的比例。 eg:m个样本中有 ...
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ...
绘制了一张导图,有不对的地方欢迎指正: 下载地址 机器学习中,特征是很关键的.其中包括,特征的提取和特征的选择.他们是降维的两种方法,但又有所不同: 特征抽取(Feature Extraction):Creatting a subset of new features ...
End-to-end Learning of Deep Visual Representations for Image Retrieval Abstract 虽然深度学习已经成为许多计算机视觉任务的top执行方法的关键组成部分,但到目前为止,它还没有在实例级图像检索方面带来类似的改进 ...
机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 1) 《Brief History of Machine Learning》 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机、神经网络、决策树、SVM ...