原文:【机器学习】正则化的线性回归 —— 岭回归与Lasso回归

注:正则化是用来防止过拟合的方法。在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数。但是一直也无法对其基本原理有一个透彻 直观的理解。直到最近再次接触到这个概念,经过一番苦思冥想后终于有了我自己的理解。 . 正则化 Regularization 前面使用多项式回归,如果多项式最高次项比较大,模型就容易出现过拟合。正则化是一种常见的防止过拟合的方法,一般原理是 ...

2018-03-16 21:12 5 55134 推荐指数:

查看详情

机器学习-正则化回归lasso)和前向逐步回归

机器学习-正则化回归lasso)和前向逐步回归 观看本文之前,您也许可以先看一下后来写的一篇补充:https://www.cnblogs.com/jiading/p/12104854.html 本文代码均来自于《机器学习实战》 这三种要处理的是同样的问题,也就是数据的特征数量大于样本 ...

Sat Oct 19 22:28:00 CST 2019 0 1051
机器学习入门线性回归 回归Lasso回归(二)

线性回归(Linear Regression ) 1. 线性回归概述   回归的目的是预测数值型数据的目标值,最直接的方法就是根据输入写出一个求出目标值的计算公式,也就是所谓的回归方程,例如y = ax1+bx2,其中求回归系数的过程就是回归。那么回归是如何预测的呢?当有了这些回归 ...

Tue Jul 17 17:53:00 CST 2018 0 2795
线性回归——Lasso回归回归

线性回归——最小二乘 线性回归(linear regression),就是用线性函数 f(x)=w⊤x+b">f(x)=w⊤x+bf(x)=w⊤x+b 去拟合一组数据 D={(x1,y1),(x2,y2),...,(xn,yn)}">D={(x1,y1),(x2,y2 ...

Fri Aug 20 01:33:00 CST 2021 0 143
coursera机器学习-logistic回归正则化

#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得; #注:此笔记是我自己认为本节课里比较重要、难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点; #标记为<补充>的是我自己加的内容而非课堂内容,参考文献列于文末。博主能力有限,若有错误,恳请指正; #------------------------------------------------ ...

Sat Nov 09 17:15:00 CST 2013 0 4275
Python机器学习随笔之非线性分类的logistic回归拟合及正则化

编者注:本文采用梯度下降法来求解的logistic回归,关于其思想以及编程原理见本人之前文章《梯度下降法求解线性回归的python实现及其结果可视》(https://zhuanlan.zhihu.com/p/30562194),在这里不再赘述。 01 非线性决策边界 ...

Wed May 09 23:06:00 CST 2018 0 2752
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM