分类模型评估: 指标 描述 Scikit-learn函数 Precision AUC from sklearn.metrics import precision_score ...
https: stackoverflow.com questions how to compute receiving operating characteristic roc and auc in keras https: github.com keras team keras issues issuecomment http: www.luozhipeng.com p http: scikit ...
2018-03-04 16:41 0 3846 推荐指数:
分类模型评估: 指标 描述 Scikit-learn函数 Precision AUC from sklearn.metrics import precision_score ...
在一般认知中,用模型对测试集进行分类预测,结果应该是X或者X'(也可以说是或者否)。根据混淆矩阵算出TP、FP、TN、FN,进一步算出TPR、FPR。一个测试集只会有一对TPR/FPR值,那么ROC曲线就只会有一个点,何谈曲线之说?难道是用多个测试集得到多对TPR/FPR值,来绘制ROC曲线 ...
ACC, Precision and Recall 这些概念是针对 binary classifier 而言的. 准确率 (accuracy) 是指分类正确的样本占总样本个数的比例. 精 ...
作为机器学习重要的评价指标,标题中的三个内容,在下面读书笔记里面都有讲: http://www.cnblogs.com/charlesblc/p/6188562.html 但是讲的不细,不太懂。今天又理解了一下。看了这篇文章: https://www.douban.com/note ...
1.简介 ROC曲线与AUC面积均是用来衡量分类型模型准确度的工具。通俗点说,ROC与AUC是用来回答这样的问题的: 分类模型的预测到底准不准确? 我们建出模型的错误率有多大?正确率有多高? 两个不同的分类模型中,哪个更好用?哪个更准确 ...
文章转载自 http://alexkong.net/2013/06/introduction-to-auc-and-roc/ ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,对两 ...
1.confusion_matrix 理论部分见https://www.cnblogs.com/cxq1126/p/12990784.html#_label2 2.classific ...
ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,对两者的简单介绍见这里。这篇博文简单介绍ROC和AUC的特点,以及更为深入地,讨论如何作出ROC曲线图以及计算AUC。 ROC曲线 ...