本周主要构件了一个卷积神经网络的模型,主要用以识别对应图片的种类,并且能够对图片进行预测 以下就是实现从网上爬取图片之后并识别毫不相干的从百度上查找的猫和狗图片的种类 首先从网上爬取一些图片到本地的文件夹当中,并对图片进行对应标签的标记。 我在网上选取了一些猫和狗的图片, 对爬取 ...
一下来自知乎 按照我的理解,CNN的核心其实就是卷积核的作用,只要明白了这个问题,其余的就都是数学坑了 当然,相比较而言之后的数学坑更难 。 如果学过数字图像处理,对于卷积核的作用应该不陌生,比如你做一个最简单的方向滤波器,那就是一个二维卷积核,这个核其实就是一个模板,利用这个模板再通过卷积计算的定义就可以计算出一幅新的图像,新的图像会把这个卷积核所体现的特征突出显示出来。比如这个卷积核可以侦测水 ...
2018-02-11 00:08 0 6938 推荐指数:
本周主要构件了一个卷积神经网络的模型,主要用以识别对应图片的种类,并且能够对图片进行预测 以下就是实现从网上爬取图片之后并识别毫不相干的从百度上查找的猫和狗图片的种类 首先从网上爬取一些图片到本地的文件夹当中,并对图片进行对应标签的标记。 我在网上选取了一些猫和狗的图片, 对爬取 ...
卷积神经网络入门 CNN fly 多层卷积网络的基本理论 卷积神经网络(Convolutional Neural Network,CNN) 是一种前馈神经网络 ...
卷积网络博大精深,不同的网络模型,跑出来的结果是不一样,在不知道使用什么网络的情况下跑自己的数据集时,我建议最好去参考基于cnn的手写数字识别网络构建,在其基础上进行改进,对于一般测试数据集有很大的帮助。 分享一个网络构架和一中训练方法: # coding:utf-8 import ...
卷积神经网络与图像识别 我们介绍了人工神经网络,以及它的训练和使用。我们用它来识别了手写数字,然而,这种结构的网络对于图像识别任务来说并不是很合适。本文将要介绍一种更适合图像、语音识别任务的神经网络结构——卷积神经网络(Convolutional Neural Network, CNN)。说卷积 ...
利用TensorFlow1.0搭建卷积神经网络用于识别MNIST数据集,算是深度学习里的hello world吧。虽然只有两个卷积层,但在训练集上的正确率已经基本达到100%了。 代码如下: 训练一共训练了3个多小时,训练效果应当很棒。 但在测试集上,由于一次直接读入10000 ...
图片总共40个人,每人10张图片,每张图片高57,宽47。共400张图片。 读取图片的py文件 CNN人脸识别代码 ...
传统神经网络: 是全连接形式,即样本的每个特征属性都通过所有的隐藏层节点映射,最后输出数据。由于是全连接,所以计算极为复杂,且模型不易学习。 卷积神经网络:卷积神经网络(Convolutional Neural Networks, CNN), CNN可以有效的降低反馈神经网络(传统神经网络 ...
https://www.cnblogs.com/hellojamest/p/11678324.html 图卷积网络Graph Convolutional Nueral Network,简称GCN,最近两年大热,取得不少进展。不得不专门为GCN开一个新篇章,表示其重要程度。本文结合大量参考文献 ...