作者:szx_spark 1. 经典网络 LeNet-5 AlexNet VGG Ng介绍了上述三个在计算机视觉中的经典网络。网络深度逐渐增加,训练的参数数量也骤增。AlexNet大约6000万参数,VGG大约上亿参数。 从中我们可以学习 ...
作者:szx spark . Padding 在卷积操作中,过滤器 又称核 的大小通常为奇数,如 x , x 。这样的好处有两点: 在特征图 二维卷积 中就会存在一个中心像素点。有一个中心像素点会十分方便,便于指出过滤器的位置。 在没有padding的情况下,经过卷积操作,输出的数据维度会减少。以二维卷积为例,输入大小 n times n ,过滤器大小 f times f ,卷积后输出的大小为 n ...
2018-02-10 16:16 3 10391 推荐指数:
作者:szx_spark 1. 经典网络 LeNet-5 AlexNet VGG Ng介绍了上述三个在计算机视觉中的经典网络。网络深度逐渐增加,训练的参数数量也骤增。AlexNet大约6000万参数,VGG大约上亿参数。 从中我们可以学习 ...
1. 导读 本节内容介绍普通RNN的弊端,从而引入各种变体RNN,主要讲述GRU与LSTM的工作原理。 事先声明,本人采用ng在课堂上所使用的符号系统,与某些学术文献上的命名有所不同,不过核心思想都 ...
RNN 首先思考这样一个问题:在处理序列学习问题时,为什么不使用标准的神经网络(建立多个隐藏层得到最终的输出)解决,而是提出了RNN这一新概念? 标准神经网络如下图所示: 标准神经网络在解决序列问题时,存在两个问题: 难以解决每个训练样例子输入输出长度不同的情况,因为序列的长度代表 ...
以下为在Coursera上吴恩达老师的DeepLearning.ai课程项目中,第一部分《神经网络和深度学习》第二周课程部分关键点的笔记。笔记并不包含全部小视频课程的记录,如需学习笔记中舍弃的内容请至 Coursera 或者 网易云课堂。同时在阅读以下笔记之前,强烈建议先学习吴恩达老师的视频课程 ...
一、为什么要进行实例探究? 通过他人的实例可以更好的理解如何构建卷积神经网络,本周课程主要会介绍如下网络 LeNet-5 AlexNet VGG ResNet (有152层) Inception 二、经典网络 1.LeNet-5 该网络主要针对灰度图像训练 ...
吴恩达深度学习课程的课堂笔记以及课后作业 代码下载:https://github.com/douzujun/Deep-Learning-Coursera 吴恩达推荐笔记:https://mp.weixin.qq.com/s/cX9_DiqofPhdXrY_0oTEAw 课程1 - 神经网络 ...
介绍 DeepLearning课程总共五大章节,该系列笔记将按照课程安排进行记录。 另外第一章的前两周的课程在之前的Andrew Ng机器学习课程笔记(博客园)&Andrew Ng机器学习课程笔记(CSDN)系列笔记中都有提到,所以这里不再赘述。 1、神经网络概要 ...
的rnn计算,拉通来的rnn计算 在看本文前,可以先看看这篇文章回忆一下: 吴恩达deepL ...