『PyTorch』第三弹_自动求导 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Varibale包含三个属性: data:存储了Tensor,是本体的数据 grad:保存了data的梯度,本事 ...
PyTorch 第二弹 张量 Tensor基础操作 简单的初始化 import torch as t Tensor基础操作 构建张量空间,不初始化 x t.Tensor , x 构建张量空间, , 均匀分布初始化 x t.rand , x 检查尺寸 查看矩阵形状,返回时tuple的子类,可以直接索引 print x.shape print x.size torch.Size , torch.Si ...
2018-02-10 14:33 0 2173 推荐指数:
『PyTorch』第三弹_自动求导 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Varibale包含三个属性: data:存储了Tensor,是本体的数据 grad:保存了data的梯度,本事 ...
一、普通索引 示例 a = t.Tensor(4,5) print(a) print(a[0:1,:2]) print(a[0,:2]) # 注意和前一种索引出来的值相同,shape不同 print(a[[1,2]]) # 容器索引 普通索引内存分析 ...
Tensor存储结构如下, 如图所示,实际上很可能多个信息区对应于同一个存储区,也就是上一节我们说到的,初始化或者普通索引时经常会有这种情况。 一、几种共享内存的情况 view a = t.arange(0,6) print(a.storage()) b = a.view ...
参考:http://www.jianshu.com/p/5ae644748f21# 几个数学概念: 标量(Scalar)是只有大小,没有方向的量,如1,2,3等 向量(Vector)是有大小和方 ...
一、创建Tensor 特殊方法: t.arange(1,6,2)t.linspace(1,10,3)t.randn(2,3) # 标准分布,*size t.randperm(5) # 随机排序,从0到n t.normal(means=t.arange(0, 11), std ...
一、简单数学操作 1、逐元素操作 t.clamp(a,min=2,max=4)近似于tf.clip_by_value(A, min, max),修剪值域。 a = t.arange(0,6 ...
本文列举的框架源码基于PyTorch1.0,交互语 ...
#tensor和numpy import torch import numpy as np numpy_tensor = np.random.randn(3,4) print(numpy_tensor) #将numpy的ndarray转换到tendor上 pytorch_tensor ...