原文:Pollard Rho因子分解算法

有一类问题,要求我们将一个正整数x,分解为两个非平凡因子 平凡因子为 与x 的乘积x ab。 显然我们需要先检测x是否为素数 如果是素数将无解 ,可以使用Miller Rabin算法来进行测试。 Pollard Rho是一个非常玄学的方式,用于在O n 的期望时间复杂度内计算合数n的某个非平凡因子。事实上算法导论给出的是O p ,p是n的某个最小因子,满足p与n p互质。但是这些都是期望,未必符 ...

2018-02-09 23:11 0 3901 推荐指数:

查看详情

Pollard-rho算法[因子分解算法]

试除法:最简单的因数分解算法,从$ 2 $到$ \sqrt n $一个一个试。 试除法(改进):从$ 2 $到$ \sqrt n $挑素数一个一个试。 然而这样复杂度是相当高的。 生日悖论:指如果一个房间里有23个或23个以上的人,那么至少有两个人的生日相同的概率要大于50 ...

Tue Feb 12 06:32:00 CST 2019 0 587
整数(质因子分解Pollard rho大整数分解

整数分解,又称质因子分解。在数学中,整数分解问题是指:给出一个正整数,将其写成几个素数的乘积的形式。 (每个合数都可以写成几个质数相乘的形式,这几个质数就都叫做这个合数的质因数。) 1.试除法(适用于范围比较小) 无论素数判定还是因子分解,试除法(Trial Division)都是 ...

Thu Jan 22 03:19:00 CST 2015 0 2729
Pollard Rho (大数分解算法

RhoPollard Rho是一个著名的大数质因数分解算法,它的实现基于一个神奇的算法:MillerRabinMillerRabin素数测试。 Pollard_rho算法的大致流程是 先判断当前数是否是素数(Miller_rabin)了,如果是则直接返回。如果不是素数的话,试图找到当前数的一个 ...

Sat Mar 07 06:03:00 CST 2020 0 687
大数因数分解Pollard_rho 算法详解

有一类问题,要求我们将一个正整数x,分解为两个非平凡因子(平凡因子为1与x)的乘积x=ab。 显然我们需要先检测x是否为素数(如果是素数将无解),可以使用Miller-Rabin算法来进行测试。 大数分解最简单的思想也是试除法,就是从2到sqrt(n),一个一个的试验,直到除到1或者循环完 ...

Tue Apr 14 03:54:00 CST 2020 0 1108
大数因式分解 Pollard_rho 算法详解

给你一个大数n,将它分解它的质因子的乘积的形式。 首先需要了解Miller_rabin判断一个数是否是素数 大数分解最简单的思想也是试除法,这里就不再展示代码了,就是从2到sqrt(n),一个一个的试验,直到除到1或者循环完,最后判断一下是否已经除到1了即可。 但是这样的做的复杂度 ...

Thu May 17 03:28:00 CST 2018 1 8734
【快速因数分解Pollard's Rho 算法

Pollard-Rho 是一个很神奇的算法,用于在 $O(n^{\frac{1}4}) $的期望时间复杂度内计算合数 n 的某个非平凡因子(除了1和它本身以外能整除它的数)。事书上给出的复杂度是 \(O(\sqrt{p})\) , p 是 n 的某个最小因子,满足 p 与 n/p 互质。虽然是随机 ...

Thu Nov 05 06:00:00 CST 2020 4 654
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM