Sklearn的feature_selection模块中给出了其特征选择的方法,实际工作中选择特征的方式肯定不止这几种的,IV,GBDT等等都ok; 一、移除低方差特征(Removing features with low variance) API函数 ...
python机器学习 乳腺癌细胞挖掘 博主亲自录制视频 https: study. .com course introduction.htm courseId amp utm campaign commission amp utm source cp amp utm medium share 转载:https: www.zhihu.com question answer 特征选择是特征工程中的重要 ...
2018-01-23 17:04 0 4706 推荐指数:
Sklearn的feature_selection模块中给出了其特征选择的方法,实际工作中选择特征的方式肯定不止这几种的,IV,GBDT等等都ok; 一、移除低方差特征(Removing features with low variance) API函数 ...
sklearn.feature_selection.SelectKBest 根据某中检验方法,比如chi2 啦,选择k个最高分数的特征,属于单变量特征选择的一种,可以看做是一个估计器的预处理步骤 官网地址:https://scikit-learn.org/stable/modules ...
Python —— sklearn.feature_selection模块 sklearn.feature_selection模块的作用是feature selection,而不是feature extraction。 Univariate ...
GridSearchCV用于系统地遍历模型的多种参数组合,通过交叉验证确定最佳参数。 1.GridSearchCV参数 # 不常用的参数 pre_dispatch ...
如何找出模型需要的特征?首先要找到该领域的业务专家,让他们给一些建议。比如我们需要解决一个药品疗效的分类问题,那么先找到领域专家,向他们咨询哪些因素(特征)会对该药品的疗效产生影响,较大影响和较小影响的因素都要。这些因素就是我们特征的第一候选集。(摘自:https ...
嵌入式特征选择在学习器训练过程中自动地进行特征选择。嵌入式选择最常用的是L1正则化与L2正则化。 SelectFromModel是一个元变压器,可与拟合后具有coef_或feature_importances_属性的任何估算器一起使用。如果相应的coef_ ...
向前特征选择:Sequential Forward Selection,SFS 循序向后特征选择:S ...
原文链接: An Introduction to Feature Selection 你需要哪些特征来构建一个预测模型? 这是一个困难的问题,需要这个领域的深度知识. 自动选择你的数据中的那些对要解决的问题最有用的或者最相关的特征是可能的. 这个过程叫做特征选择. 在这篇文章中,你会发 ...