一、计算机视觉 如图示,之前课程中介绍的都是64* 64 *3的图像,而一旦图像质量增加,例如变成1000 * 1000 * 3的时候那么此时的神经网络的计算量会巨大,显然这不现实。所以需要引入其他的方法来解决这个问题。 二、边缘检测示例 边缘检测可以是垂直边缘检测,也可以是水平边缘检测 ...
一 为什么要进行实例探究 通过他人的实例可以更好的理解如何构建卷积神经网络,本周课程主要会介绍如下网络 LeNet AlexNet VGG ResNet 有 层 Inception 二 经典网络 .LeNet 该网络主要针对灰度图像训练的,用于识别手写数字。 该网络是在 s提出的,当时很少用到Padding,所以可以看到随着网络层次增加,图像的高度和宽度都是逐渐减小的,深度则不断增加。 另外当时人 ...
2018-01-14 10:47 0 2654 推荐指数:
一、计算机视觉 如图示,之前课程中介绍的都是64* 64 *3的图像,而一旦图像质量增加,例如变成1000 * 1000 * 3的时候那么此时的神经网络的计算量会巨大,显然这不现实。所以需要引入其他的方法来解决这个问题。 二、边缘检测示例 边缘检测可以是垂直边缘检测,也可以是水平边缘检测 ...
一、目标定位 这一小节视频主要介绍了我们在实现目标定位时标签该如何定义。 上图左下角给出了损失函数的计算公式(这里使用的是平方差) 如图示,加入我们需要定位出图像中是否有pedes ...
一、深层神经网络 深层神经网络的符号与浅层的不同,记录如下: 用\(L\)表示层数,该神经网络\(L=4\) \(n^{[l]}\)表示第\(l\)层的神经元的数量,例如\(n^{[1]}=n^{[2]}=5,n^{[3]}=3,n^{[4]}=1\) \(a^{[l ...
介绍 DeepLearning课程总共五大章节,该系列笔记将按照课程安排进行记录。 另外第一章的前两周的课程在之前的Andrew Ng机器学习课程笔记(博客园)&Andrew Ng机器学习课程笔记(CSDN)系列笔记中都有提到,所以这里不再赘述。 1、神经网络概要 ...
作者:szx_spark 1. 经典网络 LeNet-5 AlexNet VGG Ng介绍了上述三个在计算机视觉中的经典网络。网络深度逐渐增加,训练的参数数量也骤增。AlexNet大约6000万参数,VGG大约上亿参数。 从中我们可以学习 ...
作者:szx_spark 1. Padding 在卷积操作中,过滤器(又称核)的大小通常为奇数,如3x3,5x5。这样的好处有两点: 在特征图(二维卷积)中就会存在一个中心像素点。有一个中心像素点会十分方便,便于指出过滤器的位置。 在没有padding的情况下,经过卷积操作 ...
。 假如我们公司只有4个员工,按照之前的思路我们训练的神经网络模型应该如下: 如图示,输 ...
1. Mini-batch梯度下降法 介绍 假设我们的数据量非常多,达到了500万以上,那么此时如果按照传统的梯度下降算法,那么训练模型所花费的时间将非常巨大,所以我们对数据做如下处理: 如 ...